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Xiangqiao Yan
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Harbin Institute of Technology,
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An Effective Numerical Approach
for Multiple Void-Crack
Interaction
This paper presents a numerical approach to modeling a general system containing
multiple interacting cracks and voids in an infinite elastic plate under remote uniform
stresses. By extending Bueckner’s principle suited for a crack to a general system con-
taining multiple interacting cracks and voids, the original problem is divided into a
homogeneous problem (the one without cracks and voids) subjected to remote loads and
a multiple void-crack problem in an unloaded body with applied tractions on the surfaces
of cracks and voids. Thus the results in terms of the stress intensity factors (SIFs) can be
obtained by considering the latter problem, which is analyzed easily by means of the
displacement discontinuity method with crack-tip elements (a boundary element method)
proposed recently by the author. Test examples are included to illustrate that the numeri-
cal approach is very simple and effective for analyzing multiple crack/void problems in
an infinite elastic plate. Specifically, the numerical approach is used to study the
microdefect-finite main crack linear elastic interaction. In addition, complex crack prob-
lems in infinite/finite plate are examined to test further the accuracy and robustness of the
boundary element method. �DOI: 10.1115/1.2127955�

1 Introduction
Many brittle materials, such as rocks, ceramics and intermetal-

lics, have a preexisting subscale flaw structure in the form of
voids, cracks, and other inclusions. Accurate prediction of the
explicit fracture responds of these materials would require an ac-
curate accounting of the growth of the voids and cracks and their
interaction.

In recent years, multiple void-crack-related micromechanical
analysis has become an area of research �1–17�. Analysis of crack-
crack interaction was carried out using the superposition and the
pseudotraction concept �4–9�. Analysis of hole-hole interactions
using the pseudo-traction concept was also included in the work
by Horii and Nemat-Nasser �7�. In the work by Hu et al. �16�, the
holes were modeled as unknown pseudotractions on the hole sur-
faces and the cracks were modeled as an unknown distribution of
dislocations.

This paper presents a numerical approach to modeling a general
system containing multiple interacting cracks and voids in an in-
finite elastic plate under remote uniform stresses. By extending
Bueckner’s principle �18� suited for a crack to a general system
containing multiple interacting cracks and voids, the original
problem is divided into a homogeneous problem �the one without
cracks and voids� subjected to remote loads and a multiple void-
crack problem in an unloaded body with applied tractions on the
surfaces of cracks and voids. Thus the results in terms of the stress
intensity factors �SIFs� can be obtained by considering the latter
problem, which is analyzed easily by means of the displacement
discontinuity method with crack-tip elements �a boundary element
method� proposed recently by the author �19�. Test examples are
included to illustrate that the numerical approach is very simple
and effective for analyzing multiple crack/void problems in an
infinite elastic plate. Specifically, the numerical approach is used

to study the microdefect-finite main crack linear elastic interac-
tion. Two models are used. One is “A Finite Main Crack Interac-
tion with a Collinear Elliptical Microdefect �Hole�.” The other is
“A Finite Main Crack Interaction with a Pair of Symmetric Col-
linear Elliptical Microdefects �Holes�.” In the numerical compu-
tations, the ratio of the elliptical horizontal axis length to the main
crack length varies from 0.05 to 0.4 and the elliptical aspect ratio
is taken as 0.0, 0.5 and 1.0. Thus the present numerical results
reveal the effect that the relative size of the elliptical microdefect
�hole� to the main crack has on the microdefect-finite main crack
interaction. In addition, complex crack problems in infinite/finite
plate are examined to indicate further the accuracy and robustness
of the boundary element method.

By the way, it is pointed out here that this paper concentrates on
presenting an efficient numerical approach to modeling a general
system containing multiple interacting cracks and voids in an in-
finite elastic plate under remote uniform stresses. The numerical
approach involves a generation of Bueckner’s principle and a dis-
placement discontinuity method with crack-tip elements proposed
recently by the author �19�. In addition, complex crack problems
in infinite/finite plate are examined to indicate further the accu-
racy and robustness of the boundary element method. In Ref. �19�,
the displacement discontinuity method with crack-tip elements is
described in detail and branch crack problems are analyzed to
indicate that the boundary element method is an accurate and
efficient approach for calculating the SIFs of the branch crack
problems.

2 A Description of the Present Numerical Approach
The numerical approach for analyzing a void-crack interaction

problem presented in this paper involves a generation of Bueck-
ner’s principle and a displacement discontinuity method with
crack-tip elements �an indirect boundary element method� pro-
posed recently by the author.

2.1 A Generalization of Bueckner’s Principle. Now con-
sider a two-dimensional system containing a finite number of non-
intersecting cracks and elliptical voids. Specifically, consider an
infinite elastic plate containing M arbitrarily oriented cracks and N
elliptical voids under remote uniform stresses �yy

� ,�xx
� ,�xy

� . Let
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�x ,y� be the global Cartesian coordinates. Let a�i� and f�i� be the
half-length of the ith crack and its orientation angle with respect
to the x axis, and �xc

�i� ,yc
�i�� be the coordinates of the ith crack

center. Let Rx�j� and Ry�j� be the horizontal and longitudinal radii
of the jth elliptical void, and �xv

�j� ,yv
�j�� be the coordinates of its

center. Denote the local polar coordinate system associated with
the jth void by r�j� and ��j�, and the local coordinates normal and
tangential to the ith crack by s�i� and t�i�. The boundary conditions
for the surfaces of the cracks and holes are traction free, giving

�ss
�i� = 0, �ts

�i� = 0, i = 1,2, . . . ,M ,

�rr
�j� = 0, �r�

�j� = 0, j = 1,2, . . . ,N . �1�
We shall refer to the above-described boundary value problem

as the original problem.
Bueckner �18� derived an important result, which is related to

the principle of superposition. He demonstrated the equivalence of
the SIFs resulting from external loading on a body and those
resulting from internal tractions on the crack face. The SIFs for a
crack in a loaded body may be determined by considering the
crack to be in an unloaded body with applied tractions on the
crack surface only. These surface tractions are equal in magnitude
but opposite in sign to those evaluated along the line of the crack
site in the uncracked configuration.

Here, we try to extend Bueckner’s principle �18� suited for a
crack to a general system containing multiple interacting cracks
and voids. The original problem �see Fig. 1�a�� is divided into a
homogeneous problem �see Fig. 1�b�� �the one without cracks and
holes� subjected to remote loads and a multiple void-crack prob-
lem �see Fig. 1�c�� in an unloaded body with applied tractions on
the surfaces of cracks and holes. The applied tractions on the ith
crack surface are equal in magnitude but opposite in sign to those
evaluated along the line of the ith crack site in the uncracked
configuration, which are

�sso
�i� = ��xx

� sin ��i� sin ��i� − 2�xy
� sin ��i� cos ��i�

+ �yy
� cos ��i� cos ��i�� ,

�tso
�i� = ��yy

� − �xx
� �sin ��i� cos ��i� + �xy

� �cos ��i� cos ��i�

− sin ��i� sin ��i�� , �2a�
which are called initial stresses here. Denoting the orientation
angle of a tangent at any point �r�j� ,��j�� on surface of the jth
hole with respect to the x axis by ��j�, the initial stresses at this
point are

�rro
�j� = ��xx

� sin ��j� sin ��j� − 2�xy
� sin ��j� cos ��j�

+ �yy
� cos ��j� cos ��j�� ,

�r�o
�j� = ��yy

� − �xx
� �sin ��j� cos ��j� + �xy

� �cos ��j� cos ��j�

− sin ��j� sin ��j�� . �2b�
Of course, the initial stresses defined in �2b� varies with different
point �r�j� ,��j�� on surface of the jth hole. Thus, the results in
terms of the SIFs can be obtained by considering the latter prob-
lem �see Fig. 1�c��, which is analyzed easily by means of the
displacement discontinuity method with crack-tip elements pro-
posed recently by the author �19�.

2.2 Description of the Displacement Discontinuity Method
With Crack-Tip Elements. Here, the displacement discontinuity
method with crack-tip elements proposed recently by the author
�19� is described. It consists of the �nonsingular� constant dis-
placement discontinuity element presented by Crouch and Star-
field �20� and the crack-tip displacement discontinuity elements
due to the author.

Constant Displacement Discontinuity Element and Its Nu-
merical Formulations. The displacement discontinuity Di in �x�
�a, y=0 in an infinite plate is defined as the difference in dis-
placement between the two sides of the segment �20�:

Dx = ux�x,0−� − ux�x,0+� ,

Dy = uy�x,0−� − uy�x,0+� . �3�
The solution to the subject problem is given by Crouch and Star-
field �20�. The displacements and stresses can be written as

ux = Dx�2�1 − ��F3�x,y� − yF5�x,y�� + Dy�− �1 − 2��F2�x,y�

− yF4�x,y�� ,

uy = Dx��1 − 2��F2�x,y� − yF4�x,y�� + Dy�2�1 − ��F3�x,y�

− yF5�x,y�� , �4�
and

�xx = 2GDx�2F4�x,y� + yF6�x,y�� + 2GDy�− F5�x,y� + yF7�x,y�� ,

�yy = 2GDx�− yF6�x,y�� + 2GDy�− F5�x,y� − yF7�x,y�� ,

�xy = 2GDx�− F5�x,y� + yF7�x,y�� + 2GDy�− yF6�x,y�� . �5�

G and v in these equations are shear modulus and Poisson’s ratio,
respectively. Functions F2 through F7 are described in Ref. �20�.

Equations �4� and �5� are used by Crouch and Starfield �20� to
set up a constant displacement discontinuity boundary element
method. The numerical formulations of the boundary element
method are outlined below.

The displacements and stresses denoted by Eqs. �4� and �5� can
be rewritten as

ux = Cxx�x,y�Dx + Cxy�x,y�Dy ,

uy = Cyx�x,y�Dx + Cyy�x,y�Dy , �6�
and

Fig. 1 A generalization of Bueckner’s principle
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�xx = Exxx�x,y�Dx + Exxy�x,y�Dy ,

�yy = Eyyx�x,y�Dx + Eyyy�x,y�Dy ,

�xy = Exyx�x,y�Dx + Exyy�x,y�Dy . �7�
Now let us consider two sets of displacement discontinuities

applied to two different segments, as depicted in Fig. 2. According
to Eqs. �6� and �7�, it is possible to express the displacements and
stresses in the center of the ith segment due to the displacement
discontinuities applied to the jth segment �denoted by Dj

x̄ and Dȳ
j �

with regard to the local reference system x̄ , ȳ of the same element;
let these displacements and stresses be ui

x̄ ,ui
ȳ and �i

xx ,�i
yy ,�i

xy.
The rotation transformation of the x̄ , ȳ system by an angle �=�i
−� j turns the same system into the x�, y� one, so that by means of
the rotation transformation formulas for stresses and displace-
ments �see �2.8.1� and �2.8.5� in Ref. �20��, it is possible to ex-
press the displacements and stresses in the center of the ith seg-
ment with reference to the local x� ,y� system. Here, by setting
and Dj

ȳ =Dn
j , at the same time, noting that ui

x�
and ui

y�
are equiva-

lent to ui
s and ui

n, and that �i
y�y�

and �i
x�y�

are equivalent to �i
n

and �i
s, we can obtain

ui
s = psn�x̄i, ȳi�D

j
n + pss�x̄i, ȳi�D

j
s,

ui
n = pnn�x̄i, ȳi�D

j
n + pns�x̄i, ȳi�D

j
s, �8�

�i
n = sy�y�n�x̄i, ȳi�D

j
n + sy�y�s�x̄i, ȳi�D

j
s,

�i
s = sx�y�n�x̄i, ȳi�D

j
n + sx�y�s�x̄i, ȳi�D

j
s, �9�

where x̄i , ȳi are the coordinates of the center of the ith segment
with regard to the local reference system x̄ , ȳ.

Evidently, psn�x̄i , ȳi�, etc. and sy�yn�
�x̄i , ȳi�, etc. in Eqs. �8� and

�9� are the boundary influence coefficients for the displacements
and for the stresses, respectively. Then Eqs. �8� and �9� can be
rewritten in the form

ui
n = Lij

nnDj
n + Lij

nsD
j
s,

ui
s = Lij

snDj
n + Lij

ssD
j
s, �10�

�i
n = Oij

nnDj
n + Oij

nsD
j
s,

�i
s = Oij

snDj
n + Oij

ssD
j
s. �11�

Lij
nn, etc. and Oij

nn, etc. being the influence coefficients.
In the case where there are m segments over which displace-

ment discontinuities are imposed, either linked or separated from
each other, the global effect on the ith segment can be obtained as
superimposition of the effects of any single segments, including
the ith one,

ui
n = �

j=1

m

Lij
nnDj

n + �
j=1

m

Lij
nsD

j
s,

ui
s = �

j=1

m

Lij
snDj

n + �
j=1

m

Lij
ssD

j
s, �12�

�i
n = �

j=1

m

Oij
nnDj

n + �
j=1

m

Oij
nsD

j
s,

�i
s = �

j=1

m

Oij
snDj

n + �
j=1

m

Oij
ssD

j
s. �13�

Thus any structural problem can be described by congruence
and equilibrium equations like �12� and �13� which constitute a
system of linear algebraic equations since the index i can vary
over the rang �1,m�. The terms on the left-hand side of �12� and
�13� represent the resulting effect, displacement or stress, due to
all displacement discontinuities applied, thus representing the
boundary conditions given over each segment.

If only kinematic boundary conditions are given, then the elas-
tic problem is represented by equations like �12�; while static
conditions lead to a solving system like �13�. If the elastic prob-
lem provides mixed boundary conditions, the solving system can
be obtained by choosing segment by segment the appropriate
equations of type �12� or �13�. The solution of a general problem
will be provided by a system of linear algebraic equations like

qi
n = �

j=1

m

Kij
nnDj

n + �
j=1

m

Kij
nsD

j
s,

qs
i = �

j=1

m

Kij
snDj

n + �
j=1

m

Kij
ssD

j
s,

�i = 1,2, . . . ,m� �14�

where Kij
nn, etc. and q�n etc. are, respectively, the influence coef-

ficients Lij
nn, etc. and u�n, etc. in Eq. �12� for kinematic boundary

conditions and the influence coefficients Oij
nn, etc. and ��n, etc. in

Eq. �13� for static conditions.
Once the displacement discontinuities �Dj

n ,Dj
s �j

=1, 2 , . . . ,m�� are found by solving the system �14�, stresses and
displacements at any point of the continuum medium can be
evaluated through �12� and �13� after recalculating the influence
coefficients.

Crack-Tip Displacement Discontinuity Elements and Its Nu-
merical Formulations. By using Eqs. �4� and �5�, recently, the
author �19� presented crack-tip displacement discontinuity ele-
ments, which can be classified as the left and the right crack-tip
displacement discontinuity elements to deal with crack problems
in general plane elasticity. The following gives basic formulas of
the left crack-tip displacement discontinuity element.

For the left crack-tip displacement discontinuity element, its
displacement discontinuity functions are

Dx = Hs�a + 	

a
�1/2

, Dy = Hn�a + 	

a
�1/2

, �15�

where Hs and Hn are the tangential and normal displacement dis-
continuity quantities at the center of the element, respectively.
Here, it is noted that the element has the same unknowns as the
two-dimensional constant displacement discontinuity element. But
it can be seen that the displacement discontinuity functions de-
fined in �15� can model the displacement fields around the crack
tip. The stress field determined by the displacement discontinuity

Fig. 2 Schematic of two different segments over which two
different sets of displacement discontinuities are imposed
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functions �15� possesses r−1/2 singularity around the crack tip.
Based on Eqs. �4� and �5�, the displacements and stresses at a

point �x ,y� due to the left crack-tip displacement discontinuity
element can be obtained,

ux = Hs�2�1 − ��B3�x,y� − yB5�x,y�� + Hn�− �1 − 2��B2�x,y�

− yB4�x,y�� ,

uy = Hs��1 − 2��B2�x,y� − yB4�x,y�� + Hn�2�1 − ��B3�x,y�

− yB5�x,y�� , �16�

and

�xx = 2GHs�2B4�x,y� + yB6�x,y�� + 2GHn�− B5�x,y� + yB7�x,y�� ,

�yy = 2GHs�− yB6�x,y�� + 2GHn�− B5�x,y� − yB7�x,y�� ,

�xy = 2GHs�− B5�x,y� + yB7�x,y�� + 2GHn�− yB6�x,y�� , �17�

where functions B2 through B7 are described in Ref. �19�.
It can be seen by comparing Eqs. �16� and �17� with Eqs. �4�

and �5� that the displacements and stresses due to the crack-tip
displacement discontinuity possess the same forms as those due to
a constant displacement discontinuity, with Fi�x ,y�

�i=2,3 , . . . ,7� in Eqs. �4� and �5� being replaced by Bi�x ,y�

�i=2,3 , . . . ,7�, Dx and Dy by Hs and Hn, respectively.

For the right crack tip, formulas similar to �15�–�17� can be
obtained and are not given here.

According to the similarity of Eqs. �16� and �17� to Eqs. �4� and
�5�, it is easy to perform numerical formulations like �12� and �13�
for the crack-tip displacement discontinuity elements,

ui
n = Qij

nnHj
n + Qij

nsH
j
s,

ui
s = Qij

snHj
n + Qij

ssH
j
s, �18�

�i
n = Rij

nnHj
n + Rij

nsH
j
s,

�i
s = Rij

snHj
n + Rij

ssH
j
s. �19�

Qij
nn, etc. and Rij

nn, etc. being the influence coefficients.

Numerical Formulations of the Boundary Element Method.
As mentioned above, the displacement discontinuity method with
crack-tip elements proposed recently by the author consists of the
�nonsingular� constant displacement discontinuity element pre-
sented by Crouch and Starfield and the crack-tip displacement
discontinuity elements due to the author. The numerical formula-
tions of the boundary element method are obtained easily as
follows:

qi
n = �

j=1

m

Wij
nnDj�n + �

j=1

m

Wij
nsD

j�s,

qi
s = �

j=1

m

Wij
snDj�n + �

j=1

m

Wij
ssD

j�s.

�i = 1,2, . . . ,m� �20�

The influence coefficients Wij
nn, etc. in Eqs. �20� are, respectively,

Lij
nn, etc., in Eq. �12� and Oij

nn, etc., in Eqs. �13� for kinematic
and static boundary conditions of constant displacement disconti-
nuity element, Qij

nn, etc. in Eqs. �18� and Rij
nn, etc. in Eqs. �19�

for kinematic and static boundary conditions of crack tip displace-

ment discontinuity element. The displacement discontinuities Dj�
n

and Dj�
s in Eqs. �20� are, respectively, Dj

n and Dj
s for constant

displacement discontinuity element, and Hj
n and Hj for crack tip

displacement discontinuity element.

Computational Formulas of Stress Intensity Factors and
Some Examples. The objective of many analyses of linear elastic
crack problems is to obtain the SIFs KI and KII at the crack tips.
Based on the displacement field around the crack tip, the follow-
ing formulas exist

KI = −
	2�GHn

4�1 − ��	a
, KII = −

	2�GHs

4�1 − ��	a
. �21�

To indicate further the accuracy and robustness of the numerical
approach, some examples are given below.

Crack problems in infinite plate. This subsection is concerned
with two multiple crack/void problems: One is the interaction
problem of a circular hole with a crack in an infinite plane elas-
ticity medium subjected to remote uniform stress � �see Fig. 3�.
The other is the interaction problem of one crack in horizontal
position and another in inclined position subjected to remote uni-
form stress � �see Fig. 4�. The two examples illustrate that the
numerical approach is very effective for analyzing the multiple
crack/void problems in infinite plate.

For the void-crack interaction problem shown in Fig. 3, the
following cases are considered

R/a = 2

b/a = 3.2,3.5,4,5,8

The numbers of boundary elements discretized on the crack and
the circular hole are 200 and 800, respectively. The present

numerical results of the SIFs normalized by �	�a are given in
Table 1. Table 1 also shows results obtained by Erdogan et al. �21�
by using the singular integral equation method. In addition, we
also check the effect of element discretizations on numerical re-
sults for the case b /a=3.5, R /a=2. Let the number of boundary
elements discretized on the crack and the circular hole be denoted

Fig. 3 One circular hole and one crack subjected to remote
tension

Fig. 4 One crack in horizontal position and another in inclined
position subjected to remote uniform stress �
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by Ncrack and Ncircular, respectively. Table 2 gives the variation of
the SIFs normalized by �	�a as the number of discretized ele-
ments varies. From Tables 1 and 2, it can be seen that the numeri-
cal approach is very effective for analyzing the void-crack inter-
action problem.

For the multiple-crack interaction problem shown in Fig. 4, the
following cases are considered:

2a/d = 0.1,0.9

� = 0°,30°,60°,90°

The total number of boundary elements discretized on crack AB
and crack CD is 60. The present numerical results of the SIFs
normalized

by �	�a at crack tips A, B, C, and D are given in Tables 3 and 4.
In Table 3, the results obtained by Chen �24� by using the singular
integral equation method for the multiple crack problem of plane
elasticity are also given. The exact results of a single crack in-
clined to tensile axis in an infinite plane elasticity reported in Ref.
�23� are also given in Table 4. These numerical results indicate
further that the numerical approach is also very effective for ana-
lyzing the multiple-crack interaction problem.

Crack problems in finite plate. Pan �25� pointed out that “the
displacement discontinuity method �20� is quite suitable for cracks
in infinite domain where there is no no-crack boundary. However,
it alone may not be efficient for finite domain problems, since the
kernel functions in DDM involve singularities with order higher
than those in the traditional displacement BEM.” The displace-
ment discontinuity method with crack-tip elements is used in this
subsection to calculate the SIFs of complex plane cracks in a finite
plate. These numerical results show that the numerical approach is
also simple, yet very accurate for complex plane cracks in a finite
plate.

Figure 5 shows the schematic of an inclined center crack in a
rectangular plate under tension. For this crack problem, the fol-
lowing geometrical parameters are considered

� = 15°,30°,45°,60°,75°

a/W = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8

Regarding discretization, here, the number of elements discretized
on a crack is 20 and the other boundaries are discretized according
to the limitation that all boundary elements have approximately
equal length. The present numerical results of the SIFs normalized

Table 1 Normalized SIFs for the interaction between one circular hole and one crack

b /a 3.2 3.5 4 5 8

FA FB FA FB FA FB FA FB FA FB
Present 2.2650 1.4149 1.7173 1.2887 1.3918 1.1871 1.1732 1.1007 1.0438 1.0326

Ref. �23� 2.274 1.417 1.722 1.290 1.394 1.188 1.174 1.102 1.045 1.033
Relative Error �%� 0.4 0.1 0.3 0.1 0.2 0.1 0.1 0.1 0.1 0.0

Table 2 Variation of normalized SIFs for the interaction between one circular hole and one
crack with the number of discretized elements

Ncrack 25 50 75 150
Ncircular 100 200 300 600

FA
1.6954 1.7082 1.7111 1.7181 1.722 Ref. �23�

Relative Error �%� 1.5 0.8 0.6 0.2
FB

1.2826 1.2862 1.2864 1.2890 1.290 Ref. �23�
Relative Error �%� 0.6 0.3 0.3 0.1

Table 3 Normalized SIFs for interaction between one crack in horizontal position and another
in inclined position

�2a /d=0.9�
� FIA FIA �24� FIIA FIIA �24� FIB FIB �24� FIIB FIIB �24�

0° 1.1075 1.1174 0.0000 0. 1.4182 1.4539 0.0000 0.
30° 1.0844 1.0939 −0.0464 −0.0472 1.2729 1.2933 −0.0679 −0.0663
60° 1.0227 1.0310 −0.0296 −0.0300 1.0654 1.0757 −0.0393 −0.0394
90° 0.9961 1.0040 0.0000 0. 0.9990 1.0071 0.0000 0

� FIC FIC �24� FIIC FIIC �24� FID FID �24� FIID FIID �24�
0° 1.4182 1.4539 0.0000 0. 1.1075 1.1174 0.0000 0.

30° 1.0179 1.0252 0.5451 0.5580 0.8501 0.8566 0.4444 0.4478
60° 0.3112 0.3101 0.5101 0.5149 0.3067 0.3086 0.4489 0.4525
90° 0.0314 0.0305 0.0136 0.0133 0.0314 0.0305 −0.0136 −0.0133

Table 4 Normalized SIFs for interaction between one crack in horizontal position and another in inclined position

�2a /d=0.1�
��°� FIA FIIA FIB FIIB FIC FIC �23� FIIC FIIC �23� FID FID �23� FIID FIID �23�

0 0.9933 0.0000 0.9934 0.0000 0.9934 1.0000 0.0000 0.0000 0.9933 1.0000 0.0000 0.0000
30 0.9930 −0.0005 0.9931 −0.0006 0.7463 0.7500 0.4301 0.4330 0.7462 0.7500 0.4302 0.4330
60 0.9924 −0.0005 0.9925 −0.0006 0.2496 0.2500 0.4302 0.4330 0.2495 0.2500 0.4301 0.4330
90 0.9921 0.0000 0.9921 0.0000 0.0012 0.0000 0.0001 0.0000 0.0012 0.0000 −0.0001 0.0000
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by �	�a are given in Table 5. For the comparison purpose, Table
5 also lists those reported in Ref. �23�. From Table 5, it is found
that the present numerical results are in very good agreement with
those reported in Ref. �23�.

Figure 6 shows the schematic of a fair of cracks emanating
from a square hole in a rectangular plate under biaxial loads. For
this problem, the symmetric conditions about x-axis and y-axis
can be used. For the purpose of illustrating the accuracy of the
numerical results, the following case is considered first

 = 0

b/W = 0.1, a/b = 1.1

which can be regarded approximately as a fair of cracks emanat-
ing from a square hole in an infinite plate under tension Regarding
discretization, here, the number of elements discretized on a quar-
ter of square hole is 100 and the other boundaries are discretized
according to the limitation that all boundary elements have ap-
proximately equal length. The present numerical result of the SIFs

normalized by �	�a is given in Table 6. For the comparison
purpose, Table 6 also lists the numerical result reported in Ref
�23�. From Table 6, it is found that the present numerical result is

in excellent agreement with that reported in Ref. �23�.
Then the following cases are considered. Load parameter  is

chosen as

 = 0, 1,− 1

and two types of geometric parameters are chosen as

H/W = 1

b/W = 0.25

a/W = 0.26,0.27,0.28,0.29,0.30,0.35,0.40,0.50,0.60,0.70,

0.80,0.85,0.90

and

H/W = 1

b/W = 0.50

a/W = 0.51,0.52,0.525,0.53,0.54,0.55,0.60,0.70,0.78,0.85,0.90

Regarding discretization, the number of elements discretized on a
quarter of square hole for the former and latter is, respectively,
100 and 200, and the other boundaries are discretized according to

Table 5 SIFs normalized by �	�a for an inclined center crack in a rectangular plate under tension

a/W

� �deg�

15 30 45 60 75
present �23� present �23� present �23� present �23� present �23�

FI
0.1 0.9360 0.9391 0.7532 0.7557 0.5023 0.5046 0.2519 0.2527 0.0678 0.0678
0.2 0.9599 0.9577 0.7749 0.7730 0.5191 0.5181 0.2618 0.2605 0.0712 0.0701
0.3 0.9962 0.9904 0.8074 0.8025 0.5437 0.5406 0.2758 0.2730 0.0758 0.0736
0.4 1.0488 1.0402 0.8529 0.8456 0.5767 0.5719 0.2937 0.2896 0.0814 0.0783
0.5 1.1240 1.1128 0.9145 0.9046 0.6188 0.6119 0.3155 0.3099 0.0880 0.0837
0.6 1.2324 1.2183 0.9970 0.984 0.6708 0.6611 0.3407 0.3332 0.0954 0.0896
0.7 1.3952 1.378 1.1090 1.091 0.7345 0.721 0.3693 0.359 0.1036 0.0957
0.8 1.6607 1.653 1.2663 1.245 0.8122 0.795 0.4007 0.388 0.1119 0.102

FII
0.1 0.2496 0.2502 0.4325 0.4339 0.4995 0.5018 0.4336 0.4352 0.2505 0.2516
0.2 0.2514 0.2510 0.4373 0.4367 0.5072 0.5072 0.4422 0.4417 0.2563 0.2560
0.3 0.2540 0.2527 0.4438 0.4417 0.5178 0.5162 0.4540 0.4521 0.2641 0.2631
0.4 0.2578 0.2560 0.4529 0.4497 0.5318 0.5290 0.4688 0.4660 0.2736 0.2721
0.5 0.2640 0.2619 0.4657 0.4517 0.5496 0.5458 0.4864 0.4827 0.2845 0.2825
0.6 0.2747 0.2725 0.4843 0.480 0.5719 0.5674 0.5066 0.5022 0.2962 0.2939
0.7 0.2933 0.290 0.5116 0.508 0.5998 0.595 0.5293 0.524 0.3085 0.3060
0.8 0.3272 0.307 0.5527 0.550 0.6342 0.630 0.5544 0.549 0.3210 0.319

Fig. 5 An inclined center crack in rectangular plate under
tension

Fig. 6 Schematic of a fair of cracks emanating from a square
hole in rectangular plate under biaxial loads
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the limitation that all boundary elements have approximately
equal length. The present numerical results of the SIFs normalized
by �	�a for the former and latter are listed, respectively, in
Tables 7 and 8, from which the effect of load parameter  on SIFs
is found:

�1� For small cracks, the effect of load parameter  on SIFs is
very obvious. For example, for the cases �b /W=0.25,
a /W=0.26� and �b /W=0.5, a /W=0.51�, normalized SIF
when =−1 is, respectively, 26.5% and 45.1% more than
the one when =0.

�2� With increase of a /W, this effect decreases. For example,
for the cases �b /W=0.25, a /W=0.9� and �b /W=0.5, a /W
=0.9�, normalized SIF when =−1 is, respectively, 1.8%
and 13.4% more than the one when =0.

Crack problems in half-infinite plane. Shown in Fig. 7 is an
oblique edge crack in a half-infinite plane under uniform tension.
In using the boundary element method in analyzing this kind of
half-infinite plane problem, what region is chosen to analyze is
first to be determined. For this, according to the geometry charac-
ter of the problem, a rectangular region, BB�C�C, in which the
length of CC� equals two times the one of BC, as shown in Fig. 8,

is chosen to model the half-infinite plane. Let the ratio of the
length of BC to the one of crack be gr, called a boundary geom-

etry factor. Table 9 gives the SIFs normalized by �	�a as the
boundary geometry factor varies for an edge crack normal to sur-
face in a half-infinite plane under uniform tension. In this analysis,
the number of boundary elements discretized on the crack is 15
and elements on other boundaries are discretized according to the
limitation condition that all elements have approximately the same
length. From the Table 9, it is found that the stress intensity factor
is convergent with the boundary geometry factor and relative error
is 2.58% when gr=15. Table 10 gives the present numerical re-
sults of the SIFs normalized by �	�a for an oblique edge crack in
a half-infinite plane under uniform tension. For the comparison
purpose, Table 10 lists also the results reported in Ref. �23�. From
Table 10, it is found that the present numerical results are in very
good agreement with those reported in Ref. �23�.

3 Results and Discussions
In this section, specifically, two models are adopted to study the

microdefect-finite main crack interaction. One is “A Finite Main
Crack Interaction with a Collinear Elliptical Microdefect �hole�.”
The other is “A Finite Main Crack Interaction with a Pair of
Symmetric Collinear Elliptical Microdefects �holes�.”

3.1 A Finite Main Crack Interaction With a Collinear El-
liptical Microdefect (Hole). Shown in Fig. 9 is a finite main
crack and a collinear elliptical microdefect �hole� under uniform
far-field tension � normal to the crack faces, where the length of

Table 6 Comparison of normalized SIFs for a fair of cracks
emanating from a square hole

W /b=H /b=10 �finite� Infinite �23�

a /b=1.1 1.0864 1.07

Table 7 Normalized SIFs for a fair of cracks emanating from a
square hole in a square plate under biaxial loads

�b /W=0.25�

a /W



0 1 −1

0.26 1.1974 0.8806 1.5142
0.27 1.2320 0.9228 1.5412
0.28 1.2503 0.9521 1.5485
0.29 1.2634 0.9765 1.5503
0.30 1.2743 0.9983 1.5503
0.35 1.3222 1.0911 1.5533
0.40 1.3743 1.1741 1.5745
0.50 1.5021 1.3401 1.6641
0.60 1.6622 1.5247 1.7997
0.70 1.8657 1.7509 1.9805
0.80 2.1681 2.0807 2.2555
0.85 2.4148 2.3443 2.4853
0.90 2.8337 2.7841 2.8833

Table 8 Normalized SIFs for a fair of cracks emanating from a
square hole in a square plate under biaxial loads

�b /W=0.5�

a /W



0 1 −1

0.51 1.8217 0.9996 2.6438
0.52 1.9020 1.0600 2.7440
0.525 1.9303 1.0841 2.7765
0.53 1.9551 1.1064 2.8038
0.54 1.9988 1.1481 2.8495
0.55 2.0382 1.1878 2.8886
0.60 2.2137 1.3780 3.0494
0.70 2.5575 1.7803 3.3347
0.78 2.8537 2.1564 3.5510
0.85 3.1676 2.5809 3.7543
0.90 3.5110 3.0414 3.9806

Table 9 Variation of normalized SIFs with a boundary geom-
etry factor when �=90°

gr 7 10 15 20

F 1.2535 1.1878 1.1499 1.1363
F �23� 1.121

Table 10 Normalized SIFs for an oblique edge crack in a half-
infinite plane under uniform tension

� �deg� FI FI �23� FII FII �23�

15 0.2222 0.232 0.2349 0.226
30 0.4615 0.463 0.3426 0.336
45 0.7438 0.705 0.3479 0.364
60 0.9424 0.920 0.3072 0.306
75 1.0948 1.069 0.1756 0.174
90 1.1499 1.121 0.0010 0.0

Fig. 7 An oblique edge crack in a half-infinite plane under uni-
form tension

Fig. 8 Schematic of modeling a half-infinite plane
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the main crack A�A is denoted by 2c, the microdefect is charac-
terized by an elliptical hole whose horizontal and vertical axis
radius are denoted by a and b and h is utilized to specify the
location of the center of the microdefect. In this analysis, let the
length of the finite main crack 2c be constant. Thus, ratios a /c and
a /h can be used to indicate, respectively, the relative magnitude of
the microdefect size and the relative distance away from the crack
tip A to the center of the microdefect. The following cases are
considered

a/c = 0.05,0.1,0.2,0.4

a/h = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9

b/a = 0.5,1.0

Regarding discretization, the number of elements discretized on
the microdefect is kept constant 300, while the number �N� of
elements discretized on the finite main crack A�A varies with the
ratio a /c and is given in Table 11. The SIFs at the main crack tip
A normalized by �	�c are listed in Table 12. To compare with a
finite main crack interaction with a collinear microcrack, Table 12
also gives the numerical results for a finite main crack interaction
with a collinear microcrack, i.e., those corresponding to b /a
=0.0. The present numerical results corresponding to a /c=0.05

can be used to reveal approximately the interaction of a semi-
infinite main crack with a collinear microdefect whose analysis
solution has been obtained by Gong and Meguid �22�:

KI
MA/KI = 1 +

1

4
�1 + �2��a/h�2 +

1

128
�− 49�4 + 12�3 + 46�2 + 23�


�a/h�4 + ¯ , �22�

where �=b /a, KI
MA and KI are, respectively, the SIFs when there

is the microdefect and there is not the microdefect. The analytical
results obtained by using the first three terms in formula �22� are
listed in Table 13. By comparing the present numerical results
corresponding to a /c=0.05 in Table 12 with the analytical results
shown in Table 13, it is found that to the extent that the ratio a /h
reaches 0.7 the agreement is very good with relative error less
than 1.5%, which indicates, on one hand, that the present numeri-
cal results are very accurate, and on the other hand, that the for-
mula �22� is very effective when a /h is less than 0.7. But when
the microdefect is close enough to the main crack tip A, for ex-
ample, a /h=0.9, the analytical results obtained by using the first
three terms in formula �22� have relative errors 11.9%, 19.2% and
15.0%, respectively, for the elliptical aspect ratios b /a=0.0, 0.5
and 1.0 compared to the present study results.

The present numerical results shown in Table 12 can be used to
develop rules for a collinear microdefect interaction with a finite
main crack. The following laws exist:

�1� When the microdefect is far enough away from the finite
main crack tip, for example, a /h�0.1, the microdefect has no
effect on the SIFs at the main crack tip A.

�2� The closer the microdefect is to the finite main crack tip, the
more obvious is the effect of the elliptical hole aspect ratio on the
SIFs at the main crack tip A. For example, for the case �a /c
=0.05, a /h=0.7�,

F�b/a = 0.5,a/h = 0.7,a/c = 0.05� − F�b/a = 0.0,a/h = 0.7,a/c = 0.05�
F�b/a = 0.0,a/h = 0.7,a/c = 0.05�

= 5.1%,

Table 11 Variation of number of elements discretized on the
finite main crack with the ratio a /c

a /c 0.05 0.1 0.2 0.4

N 750 375 188 94

Table 12 Normalized SIFs for finite main crack interaction with a collinear microdefect

a /c b /a

a /h

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 1.0015 1.0098 1.0238 1.0451 1.0761 1.1214 1.1908 1.3087 1.5679
0.05 0.5 0.9995 1.0089 1.0257 1.0522 1.0927 1.1535 1.252 1.428 1.8266

1.0 1.0001 1.0126 1.0360 1.0730 1.1285 1.2095 1.3273 1.5121 1.8618
0.0 1.0018 1.0105 1.0252 1.0472 1.0789 1.1250 1.1954 1.3147 1.5760

0.1 0.5 1.0014 1.0112 1.0282 1.0550 1.0954 1.1573 1.2574 1.4366 1.8403
1.0 1.0018 1.0140 1.0369 1.0742 1.1322 1.2121 1.3345 1.5270 1.8858
0.0 1.0015 1.0112 1.0270 1.0502 1.0834 1.1311 1.2034 1.3253 1.5908

0.2 0.5 1.0022 1.0127 1.0305 1.0580 1.0994 1.1627 1.2657 1.4483 1.8561
1.0 1.0024 1.0146 1.0374 1.0747 1.1318 1.2167 1.3451 1.5447 1.9143
0.0 1.0005 1.0115 1.0291 1.0544 1.0901 1.1408 1.2168 1.3435 1.6167

0.4 0.5 1.0023 1.0138 1.0332 1.0625 1.1061 1.1723 1.2788 1.4697 1.8988
1.0 1.0025 1.0165 1.0435 1.0881 1.1556 1.2524 1.3916 1.6811 1.9826

Fig. 9 A collinear elliptical microdefect „hole… in the vicinity of
a finite main crack
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F�b/a = 1.0,a/h = 0.7,a/c = 0.05� − F�b/a = 0.0,a/h = 0.7,a/c = 0.05�
F�b/a = 0.0,a/h = 0.7,a/c = 0.05�

= 11.5%, �23�

while for the case �a /c=0.05, a /h=0.9�,

F�b/a = 0.5,a/h = 0.9,a/c = 0.05� − F�b/a = 0.0,a/h = 0.9,a/c = 0.05�
F�b/a = 0.0,a/h = 0.9,a/c = 0.05�

= 16.5%,

F�b/a = 1.0,a/h = 0.9,a/c = 0.05� − F�b/a = 0.0,a/h = 0.9,a/c = 0.05�
F�b/a = 0.0,a/h = 0.9,a/c = 0.05�

= 18.7%, �24�

where F is the normalized SIFs listed in Table 12.
�3� The effect of the finite main crack size on SIFs at the main crack tip A can be characterized by means of a dimensionless quantity

a /c. From Table 12, it is found that when the microdefect is close enough to the main crack tip A, the dimensionless quantity a /c has
a certain influence on the SIFs at the main crack tip A. When a /h=0.9, for example, for b /a=0.0,

F�b/a = 0,a/h = 0.9,a/c = 0.4� − F�b/a = 0,a/h = 0.9,a/c = 0.05�
F�b/a = 0,a/h = 0.9,a/c = 0.05�

= 3.1%, �25�

for b /a=0.5,

F�b/a = 0.5,a/h = 0.9,a/c = 0.4� − F�b/a = 0.5,a/h = 0.9,a/c = 0.05�
F�b/a = 0.5,a/h = 0.9,a/c = 0.05�

= 4.0%, �26�

and for b /a=1.0,

F�b/a = 1,a/h = 0.9,a/c = 0.4� − F�b/a = 1,a/h = 0.9,a/c = 0.05�
F�b/a = 1,a/h = 0.9,a/c = 0.05�

= 6.5%. �27�

�4� By comparing the present study results with those for a semi-infinite crack interaction with a microcrack �9–11� which can be
regarded as ones corresponding to a /c=0.05, b /a=0.0 listed in Table 12, it is found that when the microdefect is close enough to the
main crack tip, the elliptical hole aspect ratio b /a and the dimensionless quantity a /c have obvious influence on SIFs at the main crack
tip A. When a /h=0.9, for example, for a /c=0.2,

F�b/a = 0.5,a/h = 0.9,a/c = 0.2� − F�b/a = 0,a/h = 0.9,a/c = 0.05�
F�b/a = 0,a/h = 0.9,a/c = 0.05�

= 18.4%,

F�b/a = 1,a/h = 0.9,a/c = 0.2� − F�b/a = 0,a/h = 0.9,a/c = 0.05�
F�b/a = 0,a/h = 0.9,a/c = 0.05�

= 22.1%, �28�

and for a /c=0.4

F�b/a = 0.5,a/h = 0.9,a/c = 0.4� − F�b/a = 0,a/h = 0.9,a/c = 0.05�
F�b/a = 0,a/h = 0.9,a/c = 0.05�

= 21.1%,

F�b/a = 1,a/h = 0.9,a/c = 0.4� − F�b/a = 0,a/h = 0.9,a/c = 0.05�
F�b/a = 0,a/h = 0.9,a/c = 0.05�

= 26.5%. �29�

3.2 A Finite Main Crack Interaction With a Pair of Sym-
metric Collinear Elliptical Microdefects (Holes). Shown in Fig.
10 are a finite main crack and a pair of symmetric collinear ellip-
tical microdefects �holes� under uniform far-field tension � nor-
mal to the crack faces. The symmetric condition for this problem
is available. Regarding the discretization of boundary elements,
the number of elements discretized on one microdefect is kept
constant of 300, while the number �N� of elements discretized on
the half-finite main crack varies with the ratio a /c and is given in
Table 14. The numerical results of the SIFs at the main crack tip

normalized by �	�c are listed in Table 15. To allow comparison
of a finite main crack interaction with a pair of symmetric collin-
ear microcracks, Table 15 also gives the numerical results for
b /a=0.0.

It can be seen from Tables 12 and 15 that for very small micro-
defect, for example, a /c=0.05, the SIFs at the main crack tip
obtained by the model shown in Fig. 10 is almost equal to that by
the model shown in Fig. 9 with relative error less than 1.4%,
which illustrates that the present numerical results corresponding
to a /c=0.05 given in Table 15 are very accurate because the

Table 13 Normalized SIFs determined by using the first three terms in formula „22…

b /a

a /h

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 1.0025 1.0104 1.0247 1.0470 1.0796 1.1254 1.1882 1.2720 1.3819
0.5 1.0032 1.0130 1.0309 1.0587 1.0994 1.1566 1.2348 1.3394 1.4764
1.0 1.0050 1.0204 1.0471 1.0866 1.1411 1.2134 1.3069 1.4256 1.5742
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present numerical results corresponding to a /c=0.05 listed in
Table 12, as described above, can be used to reveal very accu-
rately the interaction of a semi-infinite main crack with a collinear
microdefect.

By comparing the numerical results listed in Table 15 with
those in Table 12, it is found that when a pair of collinear micro-
defects are close enough to the respective main crack tips neigh-
boring there is some difference between the models shown in
Figs. 9 and 10. For example, when a /c=0.2, a /h=0.9,

F*�b/a = 0.5,a/h = 0.9,a/c = 0.2�−F�b/a = 0.5,a/h = 0.9,a/c = 0.2�
F�b/a = 0.5,a/h = 0.9,a/c = 0.2�

= 4.1%,

F*�b/a = 1,a/h = 0.9,a/c = 0.2� − F�b/a = 1,a/h = 0.9,a/c = 0.2�
F�b/a = 1,a/h = 0.9,a/c = 0.2�

= 5.0%, �30�

where F* is the normalized SIFs listed in Table 15; when a /c
=0.4, a /h=0.9,

F*�b/a = 0.5,a/h = 0.9,a/c = 0.4�−F�b/a = 0.5,a/h = 0.9,a/c = 0.4�
F�b/a = 0.5,a/h = 0.9,a/c = 0.4�

= 7.3%,

F*�b/a = 1,a/h = 0.9,a/c = 0.4� − F�b/a = 1,a/h = 0.9,a/c = 0.4�
F�b/a = 1,a/h = 0.9,a/c = 0.4�

= 8.9%. �31�
By comparing the present numerical results with those for a

semi-infinite crack interaction with a microcrack �9–11� which can
be regarded as ones corresponding to a /c=0.05, b /a=0.0 listed in
Table 12, it is found that when a pair of collinear microdefects are
close enough to the respective main crack tips neighboring the

elliptical hole aspect ratio b /a and dimensionless quantity a /c
have obvious influence on the SIFs at the main crack tip. For
example, when a /h=0.9, a /c=0.2,

F*�b/a = 0.5,a/h = 0.9,a/c = 0.2�−F�b/a = 0,a/h = 0.9,a/c = 0.05�
F�b/a = 0,a/h = 0.9,a/c = 0.05�

= 23.2%,

F*�b/a = 1,a/h = 0.9,a/c = 0.2� − F�b/a = 0,a/h = 0.9,a/c = 0.05�
F�b/a = 0,a/h = 0.9,a/c = 0.05�

= 28.2%, �32�

and when a /h=0.9, a /c=0.4,

F*�b/a = 0.5,a/h = 0.9,a/c = 0.4�−F�b/a = 0,a/h = 0.9,a/c = 0.05�
F�b/a = 0,a/h = 0.9,a/c = 0.05�

= 30.0%,

F*�b/a = 1,a/h = 0.9,a/c = 0.4� − F�b/a = 0,a/h = 0.9,a/c = 0.05�
F�b/a = 0,a/h = 0.9,a/c = 0.05�

= 37.2%. �33�

4 Concluding Remarks
This paper presents a numerical approach to modeling a general

system containing multiple interacting cracks and voids in an in-
finite elastic plate under remote uniform stresses. Test examples
illustrate that the numerical approach is very simple and effective
for analyzing multiple crack/void interaction problems in an infi-
nite elastic plate. Especially, it is found that the numerical ap-
proach is very accurate for studying the microdefect-finite main
crack linear elastic interaction. In addition, it is illustrated that the
displacement discontinuity method with crack-tip elements pre-
sented by the author is very accurate for analyzing complex crack
problems in infinite/finite elastic plate.

By the way, it is pointed out that the displacement discontinuity
method with crack-tip elements differs from hybrid boundary el-
ement codes �26� which, when used to analyze the SIFs of a
branched crack, require the plate to be modeled as a finite plate of
huge dimensions by fictitious stress elements �20�, while the crack
could be modeled by displacement discontinuity elements. This

Table 14 Variation of the number of elements discretized on
the half-finite crack with the ratio a /c

a /c 0.05 0.1 0.2 0.4

N 375 188 94 49

Table 15 Normalized SIFs for finite main crack interaction with a pair symmetric collinear microdefects

a /c b /a

a /h

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 1.0023 1.0111 1.0259 1.0480 1.0798 1.1262 1.1969 1.3170 1.5806
0.05 0.5 1.0009 1.0111 1.0287 1.0562 1.0974 1.1602 1.2612 1.4430 1.8472

1.0 1.0016 1.0152 1.0398 1.0801 1.1347 1.2190 1.3394 1.5313 1.8885
0.0 1.0029 1.0130 1.0291 1.0526 1.0860 1.1343 1.2075 1.3311 1.6011

0.1 0.5 1.0031 1.0143 1.0330 1.0616 1.1043 1.1698 1.2733 1.4595 1.8797
1.0 1.0036 1.0176 1.0428 1.0826 1.1420 1.2284 1.3568 1.5564 1.9368
0.0 1.0034 1.0157 1.0343 1.0606 1.0972 1.1491 1.2270 1.3573 1.6399

0.2 0.5 1.0044 1.0176 1.0386 1.0697 1.1155 1.1846 1.2948 1.4915 1.9314
1.0 1.0047 1.0206 1.0472 1.0893 1.1527 1.2464 1.3854 1.6034 2.0103
0.0 1.0033 1.0191 1.0422 1.0736 1.1162 1.1753 1.2622 1.4054 1.7120

0.4 0.5 1.0051 1.0218 1.0471 1.0834 1.1355 1.2124 1.3341 1.5534 2.0375
1.0 1.0054 1.0239 1.0549 1.1029 1.1749 1.2795 1.4359 1.6817 2.1509

Fig. 10 A pair of symmetric collinear elliptical microdefects
„holes… in the vicinity of a finite main crack
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brings about a higher computational effort. Using the displace-
ment discontinuity method with crack-tip elements, the branched
crack problem is analyzed easily with high accuracy �19�. Also,
the boundary element method is extended easily to simulate the
mixed mode fatigue crack propagation �19�. Because of an intrin-
sic feature of the boundary element method, a general crack
growth problem can be solved in a single region formulation. In
the numerical simulation, for each increment of crack extension,
remeshing of existing boundaries is not necessary. Crack exten-
sion is modeled conveniently by adding new boundary elements
on the incremental crack extension to the previous crack bound-
aries. As an example, the fatigue propagation process of cracks
emanating from a circular hole in a plane elastic plate is simulated
using the numerical simulation approach; see Ref. �19�.

Finally, it is pointed out that over the few decades many nu-
merical methods have been proposed to model crack problems.
Finite element methods with non-singular and singular elements
�27,28� enable the accurate computation of the SIFs. However,
these methods require the finite element edges to coincide with the
crack. This often complicates mesh generation. Some of the other
prominent numerical methods are the boundary element method
�29�, the boundary collocation method �30�, the body force
method �31� and the integral equation method �32�. Recently, the
extended finite element method �X-FEM� allows for the modeling
of arbitrary geometric features independently of the finite element
mesh. The crack modeling technique is presented in Ref. �32–35�.
This method allows the modeling of crack growth without re-
meshing. In Ref. �36�, the X-FEM is applied to multiple crack/
void problems.
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The mechanical behavior of the membrane of the red blood cell is governed by two
primary microstructural features: the lipid bilayer and the underlying spectrin network.
The lipid bilayer is analogous to a two-dimensional fluid in that it resists changes to its
surface area, yet poses little resistance to shear. A skeletal network of spectrin molecules
is cross-linked to the lipid bilayer and provides the shear stiffness of the membrane. Here,
a general continuum level constitutive model of the large stretch behavior of the red
blood cell membrane that directly incorporates the microstructure of the spectrin network
is developed. The triangulated structure of the spectrin network is used to identify a
representative volume element (RVE) for the model. A strain energy density function is
constructed using the RVE together with various representations of the underlying mo-
lecular chain force-extension behaviors where the chain extensions are kinematically
determined by the macroscopic deformation gradient. Expressions for the nonlinear finite
deformation stress-strain behavior of the membrane are obtained by proper differentia-
tion of the strain energy function. The stress-strain behaviors of the membrane when
subjected to tensile and simple shear loading in different directions are obtained, dem-
onstrating the capabilities of the proposed microstructurally detailed constitutive model-
ing approach in capturing the small to large strain nonlinear, anisotropic mechanical
behavior. The sources of nonlinearity and evolving anisotropy are delineated by simulta-
neous monitoring of the evolution in microstructure including chain extensions, forces
and orientations as a function of macroscopic stretch. The model captures the effect of
pretension on the mechanical response where pretension is found to increase the initial
modulus and decrease the limiting extensibility of the networked membrane.
�DOI: 10.1115/1.2130360�

1 Introduction

The mechanical behavior of the membrane of the red blood cell
is governed by two primary microstructural features: the lipid bi-
layer and the underlying spectrin network. The lipid bilayer is
analogous to a two-dimensional fluid in that it resists changes to
its surface area, yet poses little resistance to shear as noted as
early as 1948 by Ponder �1�. A skeletal network of spectrin mol-
ecules is cross-linked to the lipid bilayer and provides the shear
stiffness of the membrane. Experiments have documented a mem-
brane surface area modulus of approximately 5�102� dyn/cm and
a membrane shear modulus of approximately 6�10−3� dyn/cm �2�.
Evans �3�, Skalak et al. �4�, and Evans and Hochmuth �5� have
noted that this membrane behavior is essentially a two-
dimensional analogue to a rubbery solid which shears readily �a
typical rubber shear modulus is of order MPa�, yet is nearly in-
compressible �a typical rubber bulk modulus is of order GPa�.
These researchers have posed a hyperelastic constitutive model

which models the membrane stress versus stretch behavior using a
two-dimensional neo-Hookean-type representation of the strain
energy density function, U*

U* = C��1
2 + �2

2 − 2�; �1�

together with a constraint of constant surface area, �1�2=1, where
�1, �2 are the principal stretches in the plane. Here, strain energy
density is defined as the strain energy per unit initial surface area.
More generally, this constitutive model is expressed in terms of
the invariants of the planar left Cauchy–Green tensor, B2D
=F2DF2D

T , which are given by I12D
= trace�B2D� and I22D

=det�B2D�, where F2D is the two-dimensional �membrane� defor-
mation gradient. Thus, the strain energy density is expressed as

U* = C�I12D
− 2�; �2�

The preservation of surface area constraint gives

I22D
= 1. �3�

The Cauchy membrane stress tensor �here “membrane stress” is
defined as the product of stress and initial membrane thickness� is
then obtained by proper differentiation of U* giving

T = 2
dU*

dI12D

B2D + hI , �4�

or,
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T = 2CB2D + hI , �5�

where h is the additional equibiaxial membrane stress required to
satisfy the preservation of surface area constraint.

High resolution electron microscopy on spread red blood cell
membranes reveals a two-dimensional triangulated network of
cross-linked spectrin molecules �Fig. 1�. In the spread state de-
picted in Fig. 1, the fully extended end-to-end distance or contour
length of a spectrin molecule extended between two cross-link
sites is approximately 150–210 nm �6�. In the unspread configu-
ration, the initial end-to-end distance is 75 nm �7,8�.

This triangulated network structure has been taken into account
in molecular level modeling of the red blood cell in Discher et al.
�9�; Boey et al. �10,11�, and Wintz et al. �12� in simulations of
deformation-induced structural instabilities �“phase transitions”�,
deformations, and cell aspiration, and, very recently, by Li et al.
�13� in simulations of cell shape. In this paper, we develop a
general continuum level hyperelastic constitutive model of the
large stretch behavior of the red blood cell membrane that incor-
porates the detailed microstructure of the triangulated spectrin net-
work and the force-extension behavior of spectrin molecules,
building microstructural features into the pioneering modeling ap-
proach of Evans �3� and Skalak et al. �4�. The contributions of
microstructural geometric nonlinearities as well as constituent
molecular chain force-extension nonlinearities to the overall an-
isotropic nonlinear stress-strain behavior of the network are iden-
tified; the effects of network pretension on the membrane stress
versus strain behavior are also investigated.

2 Constitutive Model
The constitutive model development for the general membrane

stress-stretch behavior of the triangulated spectrin network fol-
lows the successful methodology of rubber elasticity �e.g., Treloar
�14�, Arruda and Boyce �15�, Boyce and Arruda �16�� and can be
broken down as follows:

• Idealization of the networked microstructure and identifica-
tion of a representative volume element �RVE�,

• Application of macroscopic deformation to the RVE,
• Assignment of mechanical behavior to constituent elements

of the RVE,
• Determination of the RVE strain energy,
• Differentiation of the strain energy function to obtain the

general multiaxial stress-stretch behavior.

2.1 Microstructure Idealization and Corresponding Rep-
resentative Volume Element. Examination of spread red blood
cell membranes by high resolution negative staining electron mi-
croscopy reveals the microstructure of the spectrin network �Fig.
1�. A planar network is observed where typically 5–6 spectrin

molecules emanate from each cross-link site forming a rather
regular triangulated network. This structure has also been referred
to as a hexagonal lattice structure �6�, where we note six triangles
form each hexagon. We idealize this microstructure as a perfectly
triangulated network as shown in Fig. 2. Therefore, the represen-
tative unit cell is chosen to be an equilateral triangle �Fig. 2�c��.
Noting that each chain in the unit cell triangle also contributes to
its neighboring triangle, we use Voronoi tesselation to identify the
area affiliated with the chosen unit cell RVE �Fig. 2�a��. Voronoi
tesselation gives the area associated with the RVE constituents to
be twice the area of the RVE triangle; this area will be needed for
properly constructing the strain energy density of the network
later.

2.2 Deformation of the Network RVE. An arbitrary defor-
mation is applied to the unit cell equilateral triangle where the
membrane deformation gradient F2D is defined in the 1–2 frame

as: F2D=�x /�X=� F11 F12

F21 F22
� where x is the deformed position of a

material point and X is the reference position. The RVE is sub-
jected to an arbitrary deformation gradient �Fig. 3�, giving the
stretch of constituent network chains A, B, C in terms of the
macrosopic deformation gradient. The simplicity of the unit cell
triangle RVE provides a unique, kinematically determined map-
ping of the macroscopic deformation gradient to the microscopic
network deformation. Denoting the current end-to-end distance of
each chain as ri �i=A ,B ,C�, the axial stretch of each chain in the
network is �i=ri /ro �i=A ,B ,C� and can be expressed in terms of
an arbitrary deformation gradient:

�A = �F11
2 + F21

2 �1/2

�B =
1

2
��F11 − F12

�3�2 + �F21 − F22
�3�2�1/2

�C =
1

2
��F11 + F12

�3�2 + �F21 + F22
�3�2�1/2 �6�

Fig. 1 Electron micrograph of a spread human erythrocyte cy-
toskeleton †6‡

Fig. 2 Schematic of the triangulated network in „a… the unde-
formed state, also depicting Voronoi tessellation „the super-
posed hexagon… to identify the area of the RVE; „b… when
stretched in the 2 direction „surface area is preserved…; „c… the
representative volume element.

Fig. 3 Schematic of the RVE in undeformed configuration
„solid lines… and when subjected to an arbitrary deformation
gradient „dashed lines…
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2.3 Constitutive Stress-Stretch Behavior of Chains. The
stress versus stretch relationship of the membrane will depend on
the axial force-extension behavior of the constituent chains. This
modeling approach can incorporate any chain force-extension be-
havior. Here, two representations of chain behavior are studied:
linear axial extension behavior and non-Gaussian freely jointed
molecular chain behavior. The linear force-extension behavior of a
chain is given by:

Pch = kchro��ch − 1� , �7�

with corresponding strain energy:

UchLC
=

1

2
kchro

2��ch − 1�2, �8�

where kch is the chain axial stiffness in units of force/length and ro
is the initial chain length. The force-extension behavior of a mo-
lecular chain is taken to follow that of a non-Gaussian freely
jointed chain obtained from statistical mechanics treatments of
long chain molecules �e.g., Treloar �14�� and is given by:

PchNGC
=

Nkb�

Lc
�; �9�

with corresponding strain energy:

UchNGC
= kb�N� r

Lc
� + ln� �

sinh �
�	; �10�

where N is the number of Kuhn segments along the chain, kb is
Boltzmann’s constant, � is the absolute temperature, Lc=N� is the
contour length of the chain, � is the Kuhn segment length, r is the
chain end-to-end distance and � is the inverse Langevin function.
The Langevin function is defined as L���=coth���−1/�, with
inverse, �=L−1�r /LC�.

2.4 Strain Energy Density of the RVE. The strain energy of
the RVE, U is the summation of the strain energy in each chain:

U = UA + UB + UC �11�

Strain energy density is typically defined as the strain energy di-
vided by the initial volume of the material. The membrane is a
network of essentially single molecule thickness spanning a sur-
face. Therefore the strain energy density, U*, is taken here to be
strain energy per unit initial surface area. As noted earlier, the
initial area of the RVE is twice the area of the unit cell triangle
following Voronoi tesselation:

U* =
1

2Atriangle
�UA + UB + UC� . �12�

Using the strain energy expressions for each element found earlier
together with the kinematics describing the deformation for each
element, the following expression for the strain energy density
function for the network of linear chains, ULC

* is obtained:

ULC
* =

1

2Atriangle



i=A,B,C

1

2
kchro

2��i − 1�2; �13�

Noting that the chain areal density, �, is three chains per
�2A�triangle, the strain energy density may be written as:

ULC
* =

�

3
kchro

2 

i=A,B,C

1

2
��i − 1�2; �14�

Similarly, for the non-Gaussian network, the strain energy density
is given by:

UNGC
* =

�

3�kb�N 

i=A,B,C

��iro

Lc
�i + ln� �i

sinh �i
� − � ro

Lc
�o

+ ln� �o

sinh �o
��	� �15�

where ro is the initial end-to-end distance �i.e., the initial chain
length or distance between cross-links�, �i �i=A ,B ,C� are the
chain stretches defined earlier as a function of the macroscopic
deformation gradient, and �i=L−1��iro /Lc�. Note that the non-
zero value of ro implies a pretension in the molecular network.1

This pretension is an important feature of the microstructure and
strongly influences the initial modulus of the membrane and the
entire nature of the multiaxial stress-stretch behavior as will be
demonstrated in the results section. Network pretension is also
influenced by swelling �as observed in elastomers and gels� and
found to strongly affect mechanical behavior �see, for example,
Boyce and Arruda �18��.

2.5 Stress-Stretch Relationships. The stress-stretch behavior
is determined by proper differentiation of the strain energy density
function. Given a strain energy density which is a function of the
deformation gradient, the first Piola Kirchoff membrane stress is
derived as:

To =
��U*�
��F�

. �16�

The Cauchy Stress tensor is then obtained from:

T =
1

J
ToFT, �17�

where J=det�F� is the surface area ratio �ratio of current area to
original area�. Here, we take J=1 due to the preservation of area
constraint imposed by the lipid bilayer which then necessitates
an additional energy-indeterminate equibiaxial stress term, hI,
giving:

T = ToFT + hI �18�

Noting that the Ui �i=A ,B ,C� are functions of �i �i=A ,B ,C�, and
�i �i=A ,B ,C� are functions of the deformation gradient, gives:

T = � �UA
*

��A
�

��A

�F
+

�UB
*

��B
�

��B

�F
+

�UC
*

��C
�

��C

�F
	FT + hI �19�

The ���i /�F� terms are independent of chain constitutive behavior
and obtained by direct differentiation of the kinematically speci-
fied relationships of Eq. �6�. For the linear chain model:

�Ui
*

��i
=

�

3
kch��i − 1�, i = A,B,C . �20�

For the non-Gaussian chain model:

�Ui
*

��i
=

�

3
kb�N

ro

Lc
�i, i = A,B,C . �21�

The effect of a finite surface area modulus can be incorporated
into the strain energy function by addition of the strain energy
corresponding to surface area changes in a manner analogous to
the treatment of finite compressibility in rubber elasticity �e.g.,
Boyce and Arruda �16��.

The presented formulation follows a formal continuum me-
chanics methodology for hyperelasticity: the macroscopic defor-

1Pretension is also present in analogous three-dimensional formulations of classi-
cal statistical mechanics of rubber elasticity �Treloar �14�, James and Guth �17��
where the initial network chain tension is balanced by internal pressure carried, for
example, by intermolecular van der Waal interactions �17�. The spectrin network
pretension will be balanced by a few possible sources including, for example, lipid
bilayer stress, cytosol interactions, interactions with other protein molecules.
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mation gradient mapped to microscopic constituent elements; the
strain energy of the system is formulated; and the strain energy
density is then differentiated with respect to an appropriate and
general large deformation measure �here, the deformation gradi-
ent� to obtain the stress. The approach is general and can account
for any constituent chain behavior.2

2.6 Determination of Material Properties. The shear modu-
lus of the red blood cell membrane has been experimentally found
to be between 0.006 and 0.010 dyn/cm �e.g. Mohandas and Evans
�2��. The initial end-to-end distance of chains in the spectrin net-
work is taken to be ro=75 nm following Byers and Branton �7�,
Boal �8� which, from geometry, gives an areal chain density of
�=6.16�1014� /m2. The fully extended contour length of the net-
work chains has been found to be nominally 180 nm �Liu et al.
�6��. In order to meet a target initial shear modulus value of ap-
proximately 0.010 dyn/cm, the linear chain stiffness was found to
be kch=0.033 dyn/cm. In order to meet this same shear modulus
value for the non-Gaussian chain network while simultaneously
meeting the initial end-to-end length and the contour length, the
Kuhn segment length was found to be �=10.5 nm, giving N=18.
Absolute temperature is taken to be, �=300 K, corresponding to
the reported literature data which were obtained at 300 K.

3 Results

3.1 Uniaxial Tensile Behavior. The axial stress �T11� versus
axial stretch ��� relationships for uniaxial tension in the 1 direc-
tion for the linear chain �LC� network and the non-Gaussian chain
network �NGC� are obtained directly from Eq. �19� and given by:

T11LC
=

�

3
kchro

2���� − 1 + ��1

2
− ��2 + 3�−2�−1/2�	

− 3�−2�1

2
− ��2 + 3�−2�−1/2�� �22�

and

T11NGC
=

�

3
kB�N

ro

Lc
���A + �B���2 + 3�−2�−1/2�

− 3�B�−2��2 + 3�−2�−1/2� . �23�

The axial stress �T22� versus axial stretch ��� relationships for
uniaxial tension in the 2 direction for the case of a network with
constituent linear chains and the case of a network with constitu-
ent non-Gaussian chains, respectively, are given by:

T22LC
=

�

3
kchro

2�3�2�1

2
− �3�2 + �−2�−1/2	

− �−1�− 1 + �−1 + �−1�1

2
− �3�2 + �−2��−1/2	� �24�

and

T22NGC
=

�

3
kB�N

ro

Lc
3�2�B�3�2 + �−2�−1/2

− �−1��A + �B�−1�3�2 + �−2�−1/2�� . �25�
Figure 4�a� shows the uniaxial Cauchy membrane stress versus

stretch behavior3 for loading in the 1 and 2 directions, using LC
and NGC representations. For small axial stretch ���1.10�, both
networks exhibit an essentially linear behavior. Nonlinear axial

stress-stretch behavior becomes clearly apparent after a stretch of
�1.50. There are three different sources of nonlinearity in the
stress-stretch response of the network:

i. Material nonlinearity due to evolution in the microstruc-
ture geometry �changes in length and angles of chains�,

ii. Material nonlinearity arising from the nonlinear constitu-
ent chain behavior �for the non-Gaussian chain case�,

iii. Geometric nonlinearity due to macroscopic shape change
with deformation.

The sources of nonlinearity in the linear chain network arise from
�i� and �iii�, whereas all three sources of nonlinearity are inherent
in the non-Gaussian chain network behavior.

The uniaxial stress-stretch curves are direction dependent for
both the LC and NGC cases as shown by the different stress-
stretch behaviors obtained in the 1 and 2 directions. The sixfold
symmetry of the initial �undeformed� microstructure results in
isotropy of the very initial modulus; expressions for initial
uniaxial and shear modulus are provided in the appendix. How-
ever, even at an axial strain as small as 10%, anisotropy begins to
manifest itself as shown in Fig. 4�b� which shows the 10% strain
secant modulus as a function of loading direction. The anisotropy
is more apparent and important in the large strain behavior, where
the stress-stretch curves of Fig. 4�a� show significant differences
�especially for NGC network� at large stretches.

To understand the predicted stress-stretch behavior, we examine
the evolution in the triangulated network microstructure. Figure
5�a� shows the evolutions of chain stretch and chain orientation
during uniaxial tension in the 1 direction, which are independent

2An alternative, equally general formulation has been provided in the supplemen-
tal materials of the recent parallel work of Li et al. �13�, where the Worm-like chain
model is used for the constituents and the network behavior is obtained using the
virial stress theorem which is commonly used in atomistic and molecular level simu-
lations to obtain stress �see, for example, Bergstrom and Boyce �19��.

3These uniaxial tension stress-stretch results were also reported in Arslan and
Boyce �20�.

Fig. 4 „a… Uniaxial tensile stress vs stretch behavior in the 1
direction and the 2 direction for constituent linear and constitu-
ent non-Gaussian chain behaviors. „b… Percent change in the
10% strain secant modulus vs the angle of the uniaxial tension
applied for various angles with respect to axis 1 for linear chain
and non Gaussian chain behavior.
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of force-extension behavior since they are kinematically deter-
mined. Chains B and C respond identically to the applied loading
because of the symmetry. As the network is deformed, chains
stretch and orient to accommodate the imposed deformation. As
shown in Fig. 5�a�, since chain A is aligned with the loading
direction, it does not reorient ��A is constant� and simply stretches
by the imposed macroscopic stretch. Chains B and C are seen to
monotonically orient towards the 1 direction; one observation is
that, although these chains rearrange themselves as the applied
macroscopic stretch increases, they exhibit a non-monotonic
change in chain stretch with imposed macroscopic stretch: the
chains first undergo a small amount of contraction from their ini-
tial end-to-end distance and then undergo extension.

Figure 5�b� shows chain force versus macroscopic stretch for
uniaxial tension in the 1 direction. Here, for LC behavior, chain A
is aligned with the loading direction and therefore shows a linear
chain force versus macroscopic stretch behavior. However, chains
B and C both stretch and rotate towards the loading direction,
therefore their chain force values exhibit a nonlinear history with
macroscopic stretch for the LC network. For the NGC, the force-
extension curve for chain A shows the typical non-Gaussian be-
havior since it is directly axially stretched; chains B and C rotate
and stretch with deformation and thus show a different nonlinear
behavior and a later upturn in the chain force.

Chain force versus macroscopic stretch curves also provide in-
sight regarding the direction dependence of the evolution of mac-
roscopic stress with macroscopic stretch. In Fig. 4�a�, the uniaxial
stress behaviors in the 1 and the 2 directions are identical for NGC
behavior until ��1.50. The curves depart at larger stretches and
uniaxial membrane stress in the 1 direction curve gives an earlier
upturn than uniaxial membrane stress in the 2 direction. Uniaxial
tension in the 1 direction is dominated by chain A �Figs. 5�a� and
5�b��, which is directly axially stretched resulting in the earlier

upturn in the macroscopic stress-stretch curve. Uniaxial tension in
the 2 direction is dominated by chains B and C �Figs. 6�a� and
6�b��, which accommodate macroscopic stretch by both rotating
and stretching, thus giving the upturn in macroscopic stress at a
larger macroscopic stretch.

3.2 Simple Shear Behavior. The shear stress �T12� versus the
shear strain �tan �� relationships for simple shear of the linear
chain network and the non-Gaussian chain network are given by:

T12LC
=

�

2�3
kchro

2��1

2
�g1

2 + 3�1/2 − 1�g1�g1
2 + 3�−1/2

− �1

2
�g2

2 + 3�1/2 − 1�g2�g2
2 + 3�−1/2� , �26�

T12NGC
=

�

2�3
kB�N

ro

Lc
�cg1�g1

2 + 3�−1/2 − �Bg2�g2
2 + 3�−1/2� ,

�27�

where, g1= �1+�3 tan ��, g2= �1−�3 tan ��, and �i

=L−1��iro /Lc�, i=A ,B ,C.
The shear stress �T21� versus the shear strain �tan �� relation-

ships for simple shear for the case of a network with constituent
linear chains and the case of a network with constituent non-
Gaussian chains, respectively, are given by:

T21LC
=

�

6
kchro

2�2�f1 − 1�f1
−1 tan � + �1

2
�1 + f2

2�1/2 − 1� f2�1

+ f2�−1/2 + �1

2
�1 + f3

2�1/2 − 1� f3�1 + f3�−1/2� , �28�

Fig. 5 „a… Evolution of chain orientation and chain stretch with
respect to axis 1 for chains A, B and C for uniaxial tension in
the 1 direction. „b… Evolution of force in chains A, B and C with
axial stretch in the 1 direction.

Fig. 6 „a… Evolution of chain orientation and chain stretch with
respect to axis 1 for chains A, B and C for uniaxial stress in the
2 direction. „b… Evolution of force in chains A, B and C with
axial stretch in the 2 direction.
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T21NGC
=

�

6
kB�N

ro

Lc
2�Af1

−1 tan � + �cf2�1 + f2
2�−1/2

− �Bf3�1 + f3
2�−1/2� , �29�

where f1= �1+tan �2�1/2; f2= �tan �−�3�; and f3= �tan �+�3�.
Figure 7�a� shows the behavior of the network for simple shear

in the 12 and in the 21 directions, using linear chain and non-
Gaussian chain models up to a macroscopic strain of tan �=2. The
initial slope of these four curves is identical, giving the shear
modulus to be 0.014 dyn/cm. The larger deformation behavior is
nonlinear and anisotropic.

Figures 8�a� and 8�b� show the evolutions in microscopic chain
stretches/orientations and chain forces, respectively, for simple
shear in the 12 direction. Chain A is neither stretched nor rotated
in simple shear in the 12 direction. Chains B and C rotate and
stretch. Both B and C monotonically rotate towards alignment
with the shear flow; chain C monotonically extends, whereas
Chain B first contracts then extends. Note that, due to the preten-
sion present in the NGC model, Chain B does not experience a
compressive force during its contraction. Chain C extension gov-
erns the upturn in the macroscopic stress-strain behavior of the
NGC model.

Figures 9�a� and 9�b� show the chain responses for simple shear
in the 21 direction. All chains rotate towards alignment with the
shear flow; Chains A and C monotonically extend, whereas Chain
B first contracts then extends. The pretension prevents Chain B
from experiencing compressive force during its contraction in the
case of the NGC model. Chain A extension governs the upturn in
the macroscopic stress-strain behavior.

3.3 Pretension Effects. The initial end-to-end distance; ro
=75 nm implies a pretension in the network �Qi et al. �21��. The

NGC behavior naturally captures this effect of pretension. Refer-
ring back to Eq. �9�, we note that the chain force is zero when the
end-to-end distance ro=0 and nonzero when ro�0; thus ro sets
the pretension of the network. To examine the influence of preten-
sion on the membrane stress-stretch behavior, the value of ro is
varied. Changing ro also corresponds to changing the areal density
� of the membrane. As ro is increased, � decreases. Figure 10
shows the uniaxial tensile behavior of the membrane for different
ro. Uniaxial tension in the 1 direction and in the 2 direction are
both simulated for an ro of 50, 75, 125, and 150 nm. As seen in
Fig. 10�a�, as pretension is increased over the range of 50 nm
�ro�150 nm, the initial modulus of the membrane increases
�even though the chain density decreases� and the extensibility of
the network decreases. Figure 10�b� depicts the dependence of the
initial axial modulus on the pretension in a plot of Eo versus
�ro /Lc�. For �ro /Lc��0.3, the modulus is weakly dependent on
pretension; however, for �ro /Lc��0.3 the initial modulus becomes
dramatically dependent on pretension. This suggests that the
physiological conditions of ro�75 nm and Lc�180 nm, giving
ro /Lc=0.42, are perhaps microstructurally optimized to provide a
dramatic stiffening behavior at particular stretch magnitudes.

4 Summary
The mechanical behavior of the red blood cell membrane is

governed by the lipid bilayer in the membrane and the spectrin
network cross-linked to the bilayer. The lipid bilayer resists
changes in surface area while posing little resistance to shear. The
spectrin network provides shear stiffness to the membrane. In this
paper a continuum level hyperelastic constitutive model is pro-
posed for the red blood cell membrane stress-stretch behavior for
arbitrary membrane deformations. The cases of networks consti-
tuted of chains with linear force-extension behavior and for chains

Fig. 7 „a… Simple shear stress vs shear strain behavior in the
12 direction and in the 21 direction for constituent linear and
constituent non-Gaussian chain behaviors. „b… Percent change
in the 10% strain secant modulus vs the angle of the simple
shear applied for various angles with respect to axis 1 for linear
chain and non-Gaussian chain behavior.

Fig. 8 „a… Evolution of chain orientation and chain stretch with
respect to axis 1 for chains A, B and C for simple shear in the
12 direction. „b… Evolution of force in chains A, B and C with
simple shear in the 12 direction.
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with non-Gaussian force-extension behavior are studied. The skel-
etal network of spectrin is approximated as a perfectly triangu-
lated network. Uniaxial tension and simple shear behaviors of the
membrane are simulated for the two different constituent chain
behaviors in different directions. The macroscopic nonlinear
stress-stretch behavior is found to be anisotropic at large deforma-
tions. The evolution in microstructure �chain stretches, forces, and
orientations� is naturally monitored during macroscopic deforma-
tion thus capturing the effects of structural evolution on macro-
scopic mechanical loading behaviors and vice versa. The effect of
pretension on the initial modulus and the overall finite deforma-
tion stress-stretch behavior of the membrane is also studied; the
initial modulus of the membrane is found to increase with chain
pretension and the extensibility of the network is found to de-
crease with pretension. The proposed constitutive model can be
used together with finite element modeling of the red blood cell to
study complex deformation behaviors of the red blood cell; such
cell deformation studies have been conducted by Dao et al. �22�
utilizing the Evans, Skalak, Hochmuth neo-Hookean membrane
model and, more recently, by Mills et al. �23� using a phenom-
enological higher-order I1 �first stretch invariant� based constitu-
tive model.4 The proposed constitutive model also provides a
framework to explore additional complexities on the mechanics of
biomacromolecular network deformation including the effects of
cross-linking proteins providing additional strain energy contribu-
tions during deformation, non-affine deformation in irregular tri-
angulated networks �where mapping of macroscopic to micro-
scopic deformation is not simply kinematically determined, but
mechanical equilibrium must also be invoked�, three-dimensional

networked structures, and contributions of mechanically induced
unfolding. Unfolding of modular biomacromolecules such as
spectrin has been experimentally observed to have dramatic con-
sequences on the single molecule force-extension behavior �e.g.,
�25,26��; the unfolding event has been incorporated into recent
eight-chain networks of protein solids, �Qi et al., �21,27�� and
“four-chain” network representations of membranes �Qi, et al.
�21�� whereby all chains experience the same stretching and thus
unfold simultaneously. The triangulated network framework pre-
sented here provides a more physically representative microstruc-
ture for the spectrin network and will lead to unfolding in some
sequential manner for the different chains �Arslan �28�� as evi-
denced by the different evolutions in chain forces with macro-
scopic stretching presented in this paper.
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Appendix
Expressions for the initial uniaxial and shear moduli: Note that

the uniaxial modulus assumes constant surface area deformation
of the membrane.

Initial axial modulus, Eo, and shear modulus, Go, for the LC
case:

Eo =
�

2
kchro

2; Go =
�

8
kchro

2.

Initial axial modulus, Eo, and shear modulus, Go, for the NGC
case:

4We note that Arruda and Boyce �15,16� and Boyce �24� have shown that higher
order I1-based models are phenomenological equivalents to non-Gaussian statistical
models, in particular, to the eight-chain model of Arruda and Boyce �15�.

Fig. 9 „a… Evolution of chain orientation and chain stretch with
respect to axis 1 for chains A, B and C for simple shear in the
21 direction. „b… Evolution of force in chains A, B and C with
simple shear in the 21 direction.

Fig. 10 Effect of pretension on „a… the uniaxial stress-stretch
behavior and on „b… the initial axial modulus
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Eo =
�

2
kB�N� ro

Lc
��3� + � ro

L
� �2�sinh ��2

�sinh ��2 − �2	;

Go =
�

8
kB�N� ro

Lc
��3� + � ro

L
� �2�sinh ��2

�sinh ��2 − �2	 .
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Transient Response of a Finite
Bimaterial Plate Containing a
Crack Perpendicular to and
Terminating at the Interface
The transient response of a finite bimaterial plate with a crack perpendicular to and
terminating at the interface is analyzed for two types of boundaries (free-free and
clamped-clamped). The crack surface is loaded by arbitrary time-dependent antiplane
shear impact. The mixed initial-boundary value problem is reduced to a singular integral
equation of a generalized Cauchy kernel for the crack tearing displacement density or
screw dislocation density. The Gauss-Jacobi quadrature technique is employed to nu-
merically solve the singular integral equation, and then the dynamic stress intensity
factors are determined by implementing a numerical inversion of the Laplace transform.
As an example, numerical calculations are carried out for a cracked bimaterial plate
composed of aluminum (material I) and epoxy or steel (material II). The effects of
material properties, geometry, and boundary types on the variations of dynamic stress
intensity factors are discussed in detail. Results indicate that an overshoot of the normal-
ized stress intensity factor of the crack tip at the interface decreases for a cracked
bimaterial plate, and the occurrence of which is delayed for a cracked aluminum/epoxy
plate compared to a pure aluminum plate with the same crack.
�DOI: 10.1115/1.2130734�

1 Introduction
Maintaining aging structures has become a very costly problem

worldwide because tremendous efforts and considerable amount
of time are required to ensure their safety and durability. A quick
and effective technique is the use of a thin layer or film made of
special materials to bond or cover the damaged or cracked areas
of the aging structure. For example, repairing civil structures us-
ing composites in seismic environments has been very successful
in limiting the earthquake damage. Very recently, another applica-
tion has been in the use of advanced materials such as elastomer
coatings for protecting structural failure from blast loading due to
terrorist action. A common feature of these practical applications
is the transient response of a finite bimaterial plate containing a
crack perpendicular to and terminating at an interface �1�. Obvi-
ously, a fundamental investigation on the dynamic response of a
thin layer bonded with a cracked material is very useful in pro-
viding guidance for practical applications. Since analytical results
are difficult to obtain for a cracked bimaterial plate with a mode I
or mode II crack under dynamic load �2�, we will start from a
simple mode III crack to study the effect of material property
mismatch, etc. �3�.

Dynamic behaviors of a cracked bimaterial plate under impact
loading have been analyzed by a number of researchers including
Stone et al. �4�, Kuo �5,6�, Ang �7�, among others. In particular,
for an antiplane shear crack embedded in a bimaterial, Karim and
Kundu �8� treated transient surface response of layered isotropic
and anisotropic half-spaces with interface cracks subjected to an-
tiplane dynamic loading. Bostrom �9� considered elastic shear

wave scattering for an antiplane interface crack, and Liu and
Achenbach �10� studied wave scattering induced by cracks in a
laminated plate. The elastodynamic problem of a semi-infinite in-
terface crack and an interface crack of a finite crack length sub-
jected to antiplane point impact loading has been dealt with by
Kuo and Cheng �11� and Pramanik et al. �12�, respectively. For a
propagating antiplane shear interface crack, a fundamental solu-
tion has been derived by Ing and Ma �13�. An antiplane shear
crack propagating in a self-similar manner along a bimaterial in-
terface has been studied by Chung and Robinson �14�. Zhang �15�
analyzed the dynamic stress intensity factors for a periodic array
of collinear antiplane interface cracks. Furthermore, Wang and
Gross �16� have proposed the scattering of shear waves for anti-
plane shear multicracks parallel to or lying along the interface of
a layered medium. As we know, besides a class of cracks parallel
to the interface or lying along the interface, another class of cracks
inclined to or perpendicular to the interface is also often observed
in laminated composite materials �17,18�. For such a class of
cracks, Erdogan and Cook �19� studied the singularity of the static
stress intensity factor for an antiplane shear crack normal to and
terminating at the interface, and the stress intensity factor of an
inclined crack terminating at a bimaterial interface has been ana-
lyzed by Bassani and Erdogan �20�, and Ma and Hour �21�. The
scattering of shear waves from an inclined crack terminating at a
bimaterial interface has been formulated by Lu and Hanyga �22�.
It is however noted that in the above-mentioned work, two dis-
similar elastic bodies are assumed to be infinite, or at least one is
infinite in extent. By using complex-variable integral equation
along with a dislocation model, Wu and Chiu �23� gave a lower
bound for the stress intensity factor having a fixed length-to-
height ratio for a bimaterial with a rectangular cross section con-
taining an antiplane shear crack terminating at the interface. How-
ever, for such a crack terminating at the interface of a finite
bimaterial, the corresponding dynamic treatment is very limited.
For a homogeneous material with a rectangular cross section, the
transient response of multicracks has been determined by using
Laplace finite element method by Chen et al. �24�. For a dynamic
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elastic problem involving a cracked bimaterial with finite dimen-
sions, the determination of the dynamic stress intensity factors
becomes more complicated because of the interaction of the
boundaries and excited waves.

Therefore, this paper is concerned with the dynamic analysis of
a cracked finite bimaterial with a rectangular cross section. In Sec.
2, the governing equations and the corresponding initial-boundary
conditions are stated. Section 3 is devoted to the derivation of a
singular integral equation with a generalized Cauchy kernel, and
in Sec. 4, the determination procedure of a numerical solution is
provided. For two typical cracked aluminum/steel and aluminum/
epoxy plates, the numerical dynamic stress intensity factors are
determined by means of an inversion of the Laplace transform in
Sec. 5. Finally, some numerical results are discussed in detail, and
conclusions are extracted.

2 Formulation of the Problem
As shown in Fig. 1, the coordinate system is chosen such that

the x axis is along the crack, and the y axis is along the upper
surface of the cracked laminated plate. The z direction is perpen-
dicular to the x-y plane. The thicknesses of the two perfectly
bonded layers are denoted as hI and hII�hI+hII=h�, respectively.
Let the crack occupy the region a�x�hI , y=0, − � �z��.
The width of the plate is taken to be 2L.

2.1 Initial-Boundary Conditions. From the viewpoint of
fracture mechanics, the dynamic stress behavior around the crack
tip is of significant interest. In other words, we study the transient
response of a laminated plate when the crack surfaces are sud-
denly loaded by antiplane shear impact, i.e.

�zy�x,0,t� = − �0f�x�H�t�, a � x � hI, t � 0 �1�

where �0 is a constant, f�x� is a prescribed function depending on
the position, and H�t� is the Heaviside unit step function with
respect to time. It should be noted that other impact functions
could be used in place of H�t� and be similarly analyzed without
difficulty. In addition, the upper and lower surfaces of the lami-
nated plate are assumed to be free of tractions, and can be stated
as

�zx�0,y,t� = 0 �zx�h,y,t� = 0 − L � y � L, t � 0 �2�
On the other hand, for other boundaries of the laminated plate, we
consider two possible cases, free-free boundaries, and clamped-
clamped boundaries. For these two cases, one can write the cor-
responding boundary conditions as

�zy�x, ± L,t� = 0 0 � x � h, t � 0 for free – free boundaries

�3�

w�x, ± L,t� = 0 0 � x � h, t � 0 for clamped

– clamped boundaries �4�

2.2 Basic Equations. For a laminated plate subjected to anti-
plane shear load, the displacement components u and v along the
x and y axes vanish, and there is only one out-of-plane displace-
ment w, which gives two elastic stress components �zx and �zy
based on the constitutive equations

�zx = �
�w

�x
�zy = �

�w

�y
�5�

where � denotes the shear modulus of the elastic medium. With
the aid of equations of motion, the out-of-plane displacement w
must satisfy the wave equation �25�

�2w

�x2 +
�2w

�y2 =
1

cs
2

�2w

�t2 �6�

where cs is the shear wave speed of the elastic medium, which is
defined as

cs =��

�
�7�

In the present study, the laminated plate is composed of two dis-
similar bonded materials. For convenience, the physical quantities
in the elastic medium I �with a crack inside� occupying 0�x
�hI , �y � �L, are denoted with superscript I, and similarly, those
in the elastic medium II occupying hI�x�h , �y � �L, are de-
noted with superscript II.

3 Solution of the Problem
It is convenient to utilize the Laplace transform together with

the integral equation technique �26� to solve the above-stated
problem. In order to apply the Laplace transform, it is necessary
to impose the condition that the laminated plate is initially at rest,
i.e.

w = 0
�w

�t
= 0 t � 0 �8�

Under such circumstances, application of the Laplace transform,
defined by

q*�p� =�
0

�

q�t�exp�− pt�dt �9�

where the asterisk denotes the Laplace transform of a function
with respect to t, p being the Laplace transform parameter, to the
initial-boundary conditions �1�–�4� yield the following boundary
conditions in the Laplace transform domain, respectively,

�zy
* �x,0,p� = −

�0f�x�
p

a � x � hI �10�

�zx
* �0,y,p� = 0 �zx

* �h,y,p� = 0 − L � y � L �11�
and

�zy
* �x, ± L,p� = 0 0 � x � h for free – free boundaries

�12�

w*�x, ± L,p� = 0 0 � x � h for clamped – clamped boundaries

�13�

3.1 Free-free Boundaries. First, we deal with the case of
free-free boundaries. In this case, the symmetry of the problem
allows us to consider only one half of the laminated plate, i.e.,
y�0, hence, application of the Laplace transform to Eq. �6� yields
a Poisson’s equation in the Laplace transform space over a finite
region. Employing the method of separation of variables along
with the boundary condition �12�, one may obtain eigenvalues of
the resulting Poisson’s equation and the corresponding eigenfunc-

Fig. 1 A finite bimaterial plate with a through crack perpen-
dicular to and terminating at the interface
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tions. Therefore, for y�0 an appropriate solution of the problem
in the Laplace transform domain may be written in the following
form

wI*�x,y,p� =�
0

�

A�	�cosh 
I�L − y�cos 	xd	

+ �
n=0

�

Bncosh �n
I x sin �ny 0 � x � hI �14�

wII*�x,y,p� = �
n=0

�

Cn cosh �n
II�h − x�sin �ny hI � x � h �15�

with


I =�	2 + 	 p

cs
I
2

�16�

�n =
2n + 1

2L
 �17�

�n
J =��n

2 + 	 p

cs
J
2

J = I,II �18�

where A�	�, Bn, and Cn�n=0,1 ,2 , . . . � are unknown to be deter-
mined from given boundary conditions. In fact, a direct check via
substituting Eqs. �14� and �15� into the Laplace transformed equa-
tion �6� indicates that it is automatically satisfied. Moreover, the
boundary conditions �11� and �12� are fulfilled identically by uti-
lizing the constitutive relations �5�. What remains is to determine
A�	�, Bn, and Cn�n=0,1 ,2 , . . . � through the application of bound-
ary conditions at the crack surfaces in connection with the inter-
face continuity conditions.

However, in what follows A�	�, Bn, and Cn are not solved di-
rectly. Instead, we eliminate these unknown quantities from the
given boundary conditions to derive an integral equation, which
can then be solved. To this end, from the expressions of displace-
ments, with the aid of constitutive equations one can write the
stress field in the Laplace transform domain as

�zx
I*�x,y,p� = − �I�

0

�

	A�	�cosh 
I�L − y�sin 	xd	

+ �I�
n=0

�

�n
I Bn sinh �n

I x sin �ny �19�

�zy
I*�x,y,p� = − �I�

0

�


IA�	�sinh 
I�L − y�cos 	xd	

+ �I�
n=0

�

�nBn cosh��n
I x�cos �ny �20�

for 0�x�hI, and

�zx
II*�x,y,p� = − �II�

n=0

�

�n
IICn sinh �n

II�h − x�sin �ny �21�

�zy
II*�x,y,p� = �II�

n=0

�

�nCn cosh �n
II�h − x�cos �ny �22�

for hI�x�h.
Now, by applying the continuity condition of displacement and

stress at the interface x=hI to Eqs. �14� and �15�, �19� and �21�
will yield two equations, then, making use of the orthogonal prop-

erties of sine functions, one can solve for Bn and Cn in terms of
A�	�. Omitting the detailed procedure, the final results are

Bn =
2�n

L cosh �n
I hI�

0

�
A�	��B cosh 
IL

�n
2 + �
I�2 d	 �23�

Cn =
2�n

L cosh �n
IIhII�

0

�
A�	��C cosh 
IL

�n
2 + �
I�2 d	 �24�

with

�B =
	�I sin 	hI − �II�n

II tanh �n
IIhII cos 	hI

�I�n
I tanh �n

I hI + �II�n
II tanh �n

IIhII �25�

�C =
�I�n

I tanh �n
I hI cos 	hI + 	�I sin 	hI

�I�n
I tanh �n

I hI + �II�n
II tanh �n

IIhII �26�

where in deriving the above results, the known equality �27�

�
0

L

cosh 
I�L − y�sin �nydy =
�n

�n
2 + �
I�2 cosh 
IL �27�

has been used. Furthermore, substituting Eq. �23� into Eq. �14�,
we get the expression for the out-of-plane displacement given by
the Fourier cosine integral as

wI*�x,0,p� =�
0

�

A�	�cosh 
IL cos 	xd	 �28�

Consequently, similar to Erdogan �28�, if introducing the crack
tearing displacement density g�x , t�, defined by

g�x,t� =
�w�x,0,t�

�x
�29�

the single-value condition of the displacement requires that g�x , t�
must obey the constraint

�
a

hI

g�x,t�dx = 0 �30�

Moreover, by using the Fourier transform one can represent A�	�
by the following integral

A�	� = −
2

	 cosh 
IL�
a

hI

g*�s,p�sin 	sds �31�

On the other hand, applying the boundary condition �10� at the
crack surfaces to expression �20� for the antiplane stress gives

− �I�
0

�


IA�	�sinh 
IL cos 	xd	 + �I�
n=0

�

�nBn cosh �n
I x = −

�0f�x�
p

�32�

Furthermore, to eliminate auxiliary unknown functions A�	�
and Bn, we substitute Eq. �23� in connection with Eq. �31� into Eq.
�32�. By employing some known results, listed in the Appendix,
and after a lengthy derivation, one can reach a singular integral
equation with a generalized Cauchy kernel of the first kind

1


�

a

hI
g*�s,p�

s − x
ds +

1



�I − �II

�I + �II�
a

hI
g*�s,p�

s + x − 2hIds

+
1


�

a

hI

g*�s,p�RFF�s,x,p�ds = −
�0f�x�
�Ip

�33�

where the Fredholm kernel RFF�s ,x , p� is given in the Appendix.
This resulting singular integral equation is similar to that derived
by Erdogan and Cook �19�, who analyzed the static elasticity
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problem of an antiplane shear crack perpendicular to and termi-
nating at the interface of two half-planes, rather than a finite bi-
material plate as carried out in this investigation. Clearly, the ef-
fects of the boundaries can be described through the nonsingular
term of the left-hand side of Eq. �33�.

3.2 Clamped-clamped Boundaries. Now we turn our atten-
tion to the case of clamped-clamped boundaries. The procedure of
deriving a governing singular integral equation is similar to the
case of free-free boundaries in the previous subsection. To fulfill
all boundary conditions for the case of clamped-clamped bound-
aries, instead of expressions �14� and �15�, the displacements in
the Laplace transform domain in this case should be chosen as

wI*�x,y,p� =�
0

�

A�	�sinh 
I�L − y�cos 	xd	

+ �
n=1

�

Bn cosh �n
I x sin �ny 0 � x � hI �34�

wII*�x,y,p� = �
n=1

�

Cn cosh �n
II�h − x�sin �ny hI � x � h �35�

where 
I is defined as before

�n =
n

L
 �36�

�n
J =��n

2 + 	 p

cs
J
2

J = I,II �37�

A�	�, Bn, and Cn�n=1,2 , . . . � are unknown and are to be deter-
mined from the given boundary conditions. It is noted that the
dependence of �n

J on �n is the same for both free-free boundary
and clamped-clamped boundary cases, while the dependence of
�n on n is not the same for the two cases. Furthermore, by using
the constitutive equations one can write the stress field in the
Laplace transform domain as follows

�zx
I*�x,y,p� = − �I�

0

�

	A�	�sinh 
I�L − y�sin 	xd	

+ �I�
n=1

�

�n
I Bn sinh �n

I x sin �ny �38�

�zy
I*�x,y,p� = − �I�

0

�


IA�	�cosh 
I�L − y�cos 	xd	

+ �I�
n=1

�

�nBn cosh��n
I x�cos �ny �39�

for 0�x�hI, and

�zx
II*�x,y,p� = − �II�

n=1

�

�n
IICn sinh �n

II�h − x�sin �ny �40�

�zy
II*�x,y,p� = �II�

n=1

�

�nCn cosh �n
II�h − x�cos �ny �41�

for hI�x�h. Now, application of the continuity condition for
both displacement and stress at the interface x=hI to Eqs. �34� and
�35�, �38� and �40� yields two equations, the orthogonal properties
of the sine function allows us to solve Bn and Cn in terms of A�	�,
i.e.

Bn =
2�n

L cosh �n
I hI�

0

�
A�	��B sinh 
IL

�n
2 + �
I�2 d	 �42�

Cn =
2�n

L cosh �n
IIhII�

0

�
A�	��C sinh 
IL

�n
2 + �
I�2 d	 �43�

with �B and �C given by Eqs. �25� and �26�. Here in deriving the
above results, we have used the following result �27�

�
0

L

sinh 
I�L − y�sin �nydy =
�n

�n
2 + �
I�2 sinh 
IL �44�

In a similar treatment as the previous subsection, substituting the
obtained results into the remaining boundary conditions and elimi-
nating the introduced auxiliary function A�	�, we can derive the
singular integral equation. Omitting the details, the governing sin-
gular integral equation for this case is

1


�

a

hI
g*�s,p�

s − x
ds +

1



�I − �II

�I + �II�
a

hI
g*�s,p�

s + x − 2hIds

+
1


�

a

hI

g*�s,p�RCC�s,x,p�ds = −
�0f�x�
�Ip

�45�

where the Fredholm kernel RCC�s ,x , p� is given in the Appendix.
The unknown density is also subjected to the following condition

�
a

hI

g*�s,p�ds = 0 �46�

4 Numerical Treatment
In the previous section, the governing singular integral equation

for the crack tearing displacement density has been derived for
both cases of free-free boundaries and clamped-clamped bound-
aries. Because of the complicated form of the kernel, we appeal to
a numerical approach to solve it. For numerical computation, we
introduce the following normalized variables s̄ and x̄ such that

s =
hI − a

2
s̄ +

hI + a

2
x =

hI − a

2
x̄ +

hI + a

2
�47�

The above resulting singular integral equation for each case,
Eq. �33� or Eq. �45� together with the constraint condition �46�
can be rewritten as a normalized form

1


�

−1

1
G*�s̄,p�

s̄ − x̄
ds̄ +

�


�

−1

1
G*�s̄,p�
s̄ + x̄ − 2

ds +
1


�

−1

1

G*�s̄,p�R̄�s̄, x̄,p�ds̄

= −
f̄�x̄�
p

�48�

subjected to

�
−1

1

G*�s̄,p�ds̄ = 0 �49�

where

� =
�I − �II

�I + �II �50�

G*�s̄,p� =
1

�0
�Ig*�s,p� �51�

R̄�s̄, x̄,p� =
hI − a

2
R�s,x,p� �52�
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f̄�x̄� = f�x� �53�

In the above expressions, R�s ,x , p� stands either for RFF�s ,x , p�
or RCC�s ,x , p�. Taking into account that R̄�s̄ , x̄ , p� is a continuous
bounded function in �−1,1�, and that 1 / �s̄+ x̄−2� possesses a sin-
gularity of order 1 as s̄ and x̄ tend to the interface crack tip,
simultaneously. Consequently, this is a singular integral equation
with a generalized Cauchy kernel. To determine the singularity
order of the stress field near the crack tip, following the method
described in Muskhelishvili �29�, the unknown function G*�x̄ , p�
in Eq. �48� can be assumed to be of the form

G*�x̄,p� =
��x̄,p�

�1 + x̄��1�1 − x̄��2
0 � �1,�2 � 1 �54�

where ��x̄ , p� is assumed to be a Hölder continuous function over
�−1,1�. Substituting Eq. �54� into Eq. �48�, after some manipula-
tions it follows that the constants �1 and �2 are determined from

cot �1 = 0 cos �2 = − � �55�

It means that the function G*�x̄ , p� has a usual square-root singu-
larity near x̄=−1 corresponding to the crack tip away from the
interface �crack tip inside material I�, and a r−�2 �0��2�1� sin-
gularity of the crack tip at the interface, coinciding with the static
results for an antiplane shear crack normal to and terminating at
the bimaterial interface �19�. Solving the first equation in �55� one
can write G*�x̄ , p� below

G*�x̄,p� =
��x̄,p�

�1 − x̄���1 + x̄�1/2 �56�

with

� = 1 −
1


cos−1	�I − �II

�I + �II
 �57�

where the index 2 in �2 is omitted, i.e., �2 is abbreviated as �. It
is observed that the dynamic stress singularity is the same as the
corresponding static one. In particular, the singularity order of the
crack tip at the interface is related to the material properties.
Moreover, it is readily concluded that if the uncracked layer is
stiffer than the cracked layer, i.e., �II��I. The singularity order
of the crack tip at the interface is less than 1/2, while if the
uncracked layer is more compliant than the cracked layer, mean-
ing �II��I, the singularity order of the crack tip is greater than
1/2. These results are different from an interfacial crack of a bi-
material since its material order �material I or II� is exchangeable.
However, in this investigation, material I with a crack inside is
fixed.

Now, in view of the expression for G*�x̄ , p� given by Eq. �56�,
Eq. �48� subjected to the constraint �49� can be solved by approxi-
mating ��x̄ , p� by a Lagrange interpolation polynomial at the ze-
ros of Jacobi polynomial Pn

�−�,−1/2��x̄� �30�. That is, suppose that s̄ j

�j=1,2 , . . . ,n� are the zeros of Jacobi polynomial Pn
�−�,−1/2��s̄�.

Making use of the Lagrange interpolation formula, we can write

��s̄,p� � �
j=1

n

� jLj�s̄� �58�

with

� j = ��s̄ j,p� �59�

Lj�s̄� = �
1�m�n,m�j

s̄ − s̄m

s̄j − s̄m

�60�

Recalling the well-known Gauss-Jacobin quadrature formula
�31�

�
−1

1
��u�

�1 − u���1 + u��du � �
j=1

n

Aj� j �61�

where Aj is the corresponding weight or the Christoffel numbers
associated with the zeros of Jacobi polynomial Pn

�−�,−1/2��u�. It has
been shown that the above approximation is exact for all ��u�, if
��u� is a polynomial of the degree less than 2n−1. Hence the
singular integral equation with a generalized Cauchy kernel �48�
with the condition �49� can be approximated by the following
algebraic equation

1

�
j=1

n � 1

s̄ j − x̄k

+
�

s̄ j + x̄k − 2
+ R̄�s̄ j, x̄k,p��Aj + Bkj�� j

= −
f̄�x̄k�

p
1 � k � n − 1 �62�

�
j=1

n

Aj� j = 0 �63�

with

Bkj = Lj�x̄k�	q0�x̄k� − �
m=1

n
Am

s̄m − x̄k

 �64�

q0�x̄k� = −
 cot �

�1 − x̄k���1 + x̄k�1/2 −�

2

��− ��
2���0.5 − ��

�F	1,� + 0.5;� + 1;
1 − x̄k

2

 �65�

where ��*� denotes the gamma function, and F denotes the hyper-
geometric function, respectively. In our calculations, according to
the suggestions of Govorukha and Loboda �32�, we take the col-
location points x̄k as the middle points of two adjacent zeros of the
Jacobi polynomial. Thus Eqs. �62� and �63� form a system of n
algebraic equations in n unknown � j, and its solution can be
determined by straightforward computation.

On the other hand, to determine the stress intensity factors at
the crack tips, it is necessary to obtain the asymptotic stress fields
ahead of the crack tips. Bearing in mind the known result �33�

�
−1

1 �1 − u�−��1 + u�−�

�u − z�
du = −

 cosec �

�z − 1���z + 1�� −
��− ����1 − ��
2�+���1 − � − ��

�F	1,� + �;1 + �;
1 − z

2

 , �66�

for z� �−1,1�, where z is a complex variable with z=x+ iy, for the
present analysis �=1/2, after some calculations, the stress field �zy

I

in the Laplace transform domain in material I can be expressed as

�zy
I*�x,0,p� = 	hI − a

2

�+1/2 �0��− 1,p�

�hI − x���a − x�1/2 + O�1� x � a − 0

�67�

where O�1� denotes nonsingular terms. As regards the stress field
�zy

II in material II, which is similar to Eq. �22�, one can derive the
leading term associated with the singular stress field to be given
by the following singular integral

�zy
II*�x,0,p� =

1



2�II

�I + �II�
a

hI
g*�s,p�

s + x − 2hIds + O�1�, x � hI

�68�

Letting x be located ahead of the crack at the interface, it follows
from Eq. �68� that the asymptotic stress field takes the form
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�zy
II*�x,0,p� = −��II

�I 	hI − a

2

�+1/2 �0��1,p�

�x − hI���x − a�1/2

+ O�1�, x � hI + 0 �69�
In the above derivation we have applied the result

sin � =
2��I�II

�I + �II �70�

Based on the singularity of the crack tips, we use the following
definition of the stress intensity factors

Khom = lim
x→a−0

�2�a − x��1/2�zy
I �x,0,t�

�71�
Kint = lim

x→hI+0

�2�x − hI����zy
II �x,0,t�

where the stress intensity factors with the subscript “hom” and
“int” represent those parameters corresponding to the crack tips
inside the homogeneous material �material I� and at the interface,
respectively. Substituting the asymptotic stress expressions �67�
and �69� into the above definitions yields the desired stress inten-
sity factors in the Laplace transform domain as follows

Khom
* = �0�c�0.520.5−���− 1,p�

�72�
Kint

* = − �0
��II/�I�c��2�−0.5��1,p�

where � is given by Eq. �57� and we have denoted c as the length
of the half-crack, i.e.

c =
hI − a

2
�73�

Clearly, if setting �I=�II, meaning �=1/2, the above two stress
intensity factors reduce to

K* = ± �0�c�1/2���1,p� �74�
and is consistent with the well-known results given by Chen and
Sih �34�.

5 Results and Discussions
To obtain the dynamic stress intensity factors in time domain, a

numerical inversion of the Laplace transform by means of the
Fourier series expansion formulated by Crump �35� is adopted in
the present study. As compared to other methods for numerically
inverting the Laplace transform based only on some values along
the real-axis, this method has an advantage, i.e., it produces more
accurate results since the Fourier series expansion at some
complex-plane points contains more abundant information �36�.

We choose aluminum �Al� as material I, and either epoxy or
steel as material II, which is denoted as Al/Epoxy or Al/Steel,
respectively. The relevant material constants are listed in Table 1
�37�, where the last column is the singularity order � of the crack
tip at the interface when material II is perfectly bonded to alumi-
num, and is calculated using Eq. �57�. The singularity order � of
Al/epoxy and Al/steel material combination are 0.851 and 0.33.
The prescribed function f�x� is taken to be unity.

Prior to the presentation of dynamic stress intensity factors, it is
necessary to give relevant static results for validation purpose. For
a perfectly bonded infinite bimaterial with an antiplane shear
crack normal to and terminating at the interface, an explicit ex-

pression for the crack tearing displacement density or the screw
dislocation density has been obtained by Chou �38�, from which
we readily derive the corresponding static stress intensity factors
at two crack tips, given by

Khom
� = �0�c�0.5

�2�

sin
�

2

Kint
� = �0�c��23�−1�1 − ��

sin2 �

2

cos
�

2

�75�
The above results reduce to the well-known ones for a homo-

geneous isotropic material, meaning that �=0.5, and Khom
� =Kint

�

=�0�c�0.5. However, for a bimaterial consisting of two dissimilar
bonded materials �3,39�, due to the mismatched material con-
stants, the stress intensity factor of the crack tip located at the
interface, is no longer proportional to c1/2, c being the half crack
length. So the dimension of the interfacial stress intensity factor is
no longer �stress��length�1/2 or �F��m�−3/2, but �stress��length�� or
�F��m��−2. Moreover, the static stress intensity factors at two
crack tips for an infinite cracked bimaterial are dependent on the
material properties of the two mismatched materials, and vary
with the singularity order � or with the ratio of �I /�II, as shown
in Fig. 2.

5.1 Dynamic Stress Intensity Factors of Different Bimate-
rial Combinations. In this section dynamic stress intensity fac-
tors at two crack tips are examined. For convenience, the normal-
ized stress intensity factors are introduced and compared.

khom�t� =
Khom�t�
Khom

� kint�t� =
Kint�t�
Kint

� �76�

First, to examine the efficiency and accuracy of our method, the
response of a central crack is considered, i.e., a=hII. Figure 3
shows the variations of the normalized stress intensity factor
khom�t� at the crack tip away from the interface versus the normal-
ized time cs

It /c for Al/epoxy and Al/steel plates with a :2c :L
=5:2:10 under the free-free type boundaries. For comparison, the
response of the dynamic stress intensity factor for a centrally
cracked aluminum plate with the same geometry is plotted in Fig.
3. It is easily found that at the early stage of applied impact
loading, the response curves rise abruptly. The curve correspond-
ing to the Al/steel laminate reaches a dynamic overshoot khom�t�
=1.313 when cs

It /c=2, and its variation is similar to that of a
cracked aluminum plate which has its overshoot khom�t�=1.259 at
cs

It /c=2. However, for the Al/epoxy plate with �=0.851�0.5,
khom�t�=1.072 at cs

It /c=2, and its overshoot with khom�t�=1.22 is
postponed to occur at cs

It /c=4. Since before the time at which
either the stress wave from the other crack tip or those reflected
from the boundaries arrive, the stress fields at the crack tips are
precisely the same as those derived for a semi-infinite crack under
the same loading. For comparison, we use Achenbach’s analytical
solution on a semi- infinite mode III crack under sudden uniform
loading �40� to calculate the dynamic overshoots of the crack
inside material I. Under the same time cs

It /c=2, the analytical
solution yields 1.273 for Al, 1.352 for Al/steel, and 1.029 for
Al/epoxy, which are very close to our numerical values. As time
further passes all curves approach certain constant values, corre-
sponding to the static stress intensity factors for cracked plates
with the same geometry. Since khom�t�=kint�t�=1 for an infinite
cracked bimaterial when t→�, our calculated results are very
close to 1, and a slight difference results from the effects of the
boundaries. So our results are very satisfactory, and the method
presented is efficient. On the other hand, the response history of
kint�t� �the crack tip at the interface� is presented in Fig. 4. Some
similar transient trends can be seen. However, three overshoots of
the dynamic stress intensity factors for Al/steel, Al, Al/epoxy are
1.186,1.26, taking place at cs

It /c=2, and 1.231 at cs
It /c=3.3, re-

spectively.

Table 1 Material constants of chosen elastic media

Material � �GPa� � �kg/m3� �

Al 26.1 2700 0.5
Steel 80.1 7850 0.33
Epoxy 1.49 1120 0.851
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5.2 Effect of the Thickness of Material II. For a thin mate-
rial II, the responses of the normalized dynamic stress intensity
factors are displayed in Figs. 5 and 6 for the free-free boundaries
with a :c :hII :L=2:1:0.1:10. In this case, it is observed that as
compared to a cracked pure Al plate, the peak of khom�t� increases
a little bit for an Al/steel plate as cs

It /c=2, and the corresponding
peak for an Al/epoxy plate is delayed to cs

It /c=4 with a basically
unchanged value. However, the value of khom�t� at cs

It /c=2 for the
Al/epoxy plate declines apparently, implying that in this case the
interaction of the dynamic stress intensity factors is slow com-
pared to the other two cases. For kint�t� at the interface, the peak
values of the dynamic stress intensity factors, irrespective of an
Al/steel or Al/epoxy plate, become smaller than that of a cracked
aluminum plate, in particular for a smaller value of hII /a. These
peaks are tabulated in Table 2. The table reveals that under impact
loading, a thin layer/coating can lower the dynamic stress inten-
sity factor peak of the crack tip at the interface.

Figures 7 and 8 show the effect of epoxy thickness on the
dynamic stress intensity factor variations with a :c :L=2:1:10.
The curves in Fig. 7 are completely overlapped during the period
of cs

It /c�2 and then branch after cs
It /c�2, which is obviously

due to the arrival of the shear wave generated from the crack tip at
the interface. Furthermore, for a cracked Al/epoxy plate, it is seen
that khom�t� reaches a peak at cs

It /c=4, and then drops as cs
It /c

rises, which is due to the reflected wave both from the boundary
x=0 and from the interface x=hI. As regards the crack tip at the
interface, the overshoot of kint�t� takes place before that of khom�t�,
which is partially attributed to the fact that it takes a shorter time
for the reflected shear wave from the boundary x=hI+hII to reach
the crack tip at the interface x=a+hI, than for the reflected shear
wave from the boundary x=0 to reach the crack tip x=a, since
hII�a is assumed in Fig. 8. In addition, when using steel as ma-
terial II �instead of epoxy�, the variations of the dynamic stress
intensity factors khom�t� and kint�t� at two crack tips are plotted in
Figs. 9 and 10, and khom�t� and kint�t� simultaneously reach their
peaks at cs

It /c=2. Because of the influence of the reflected shear
wave, the response curve corresponding to hII /c=0.1 has the high-
est value among three curves, and that corresponding to hII /c=2
has the lowest. These results indicate that for a thin layer bonded
to a cracked media, dynamic stress intensity factors have more
apparent transient behaviors.

Fig. 2 Stress intensity factors Khom
� /�0„�c…1/2 and Kint

� /�0„�c…1/2 as a func-
tion of tan−1

„�I /�II
…

Fig. 3 Normalized stress intensity factors khom„t… versus nor-
malized time cs

I t /c for a centrally cracked plate having free-free
boundaries

Fig. 4 Normalized stress intensity factors kint„t… versus nor-
malized time cs

I t /c for a centrally cracked plate having free-free
boundaries
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5.3 Effect of the Boundary Conditions. Another interesting
phenomenon is the influence of the boundary type on the dynamic
stress intensity factor variation. Figures 11 and 12 illustrate the
response of a cracked Al/epoxy plate under the free-free, and
clamped-clamped boundaries with plate dimensions of a :c :hII

=2 :1 :0.5 and different L /c values. As expected, for L /c=10, the
responses under the free-free and clamped-clamped boundaries
are identical within cs

It /c�10. However, for L /c=1 and 2, there
is significant discrepancy between the response curves corre-
sponding to the free-free and clamped- clamped boundaries. Re-
flected waves can be generated when waves arrive at the free-free
boundaries, which enhances the stress intensity factor, while trans-
mitted wave occurs at the clamped-clamped boundaries, which

weakens the stress intensity factor. Moreover, one can conclude
that it takes cs

It /c=1 for excited shear waves to travel along the
boundaries y= ±L for the case of L /c=1, and it takes the same
time period to travel back to the crack tips. Therefore, in Figs. 11
and 12, the dynamic stress intensity factors are enhanced or weak-
ened, occurring when cs

It /c�2 for L /c=1. Similarly, the same
conclusion can be inferred for L /c=2. Comparing the response
curves for the free-free type boundaries to those for the clamped-
clamped boundaries, the overshoot of the dynamic stress intensity
factor for the free-free type boundaries is larger than that of the
clamped-clamped boundaries, irrespective of khom�t� or kint�t�,
suggesting that a crack in a bimaterial under the free-free bound-
aries is easier to extend than that under the clamped-clamped
boundaries, in particular for smaller L.

6 Conclusions
A rectangular bimaterial plate containing a through crack per-

pendicular to and terminating at the interface is considered. Mak-
ing use of the Laplace transform, the associated initial-boundary
value problem is converted to a singular integral equation with a
generalized Cauchy kernel for the crack tearing displacement den-
sity. By using the Gauss-Jacobi quadrature method, the resulting
singular integral equation is approximated to be a system of alge-

Fig. 5 Normalized stress intensity factors khom„t… versus nor-
malized time cs

I t /c for a cracked plate with a :c :hII :L
=2:1:0.1:10 having free-free boundaries

Fig. 6 Normalized stress intensity factors kint„t… versus nor-
malized time cs

I t /c for a cracked plate with a :c :hII :L
=2:1:0.1:10 having free-free type boundaries

Table 2 Peak values of the normalized dynamic stress inten-
sity factors with a :c :L=2:1:10

khom kint

hII /c 2 0.5 0.1 2 0.5 0.1
Al 1.263 1.264 1.266 1.262 1.318 1.61
Al/steel 1.314 1.315 1.319 1.189 1.226 1.549
Al/epoxy 1.221 1.224 1.278 1.235 1.25 1.317

Fig. 7 The effects of the thickness of epoxy on khom„t… for
a :c :L=2:1:10 having free-free boundaries

Fig. 11 The effects of the boundary types on khom„t… for a
cracked Al/epoxy plate with a :c :hII=2:1:0.5 for various values
of L/c
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braic equations. Numerical calculations are performed for typical
bimaterial plates and the effects of material properties, geometry,
and boundary types on the dynamic stress intensity factor varia-
tions are discussed. The following can be concluded:

• The dynamic elastic stress field for the crack tip at the
interface exhibits a singularity of � order, �=1
−cos−1���I−�II� / ��I+�II��, while for the crack tip em-
bedded in material I, still remains a square-root singular-
ity. Also, the dynamic stress singularity order of the
crack tip is the same as the static one.

• The overshoot of the normalized dynamic stress intensity
factor of the crack tip at the interface for a cracked Al/
epoxy or Al/steel plate declines as compared to that for a
pure aluminum plate with the same crack.

• The occurrence of the overshoot of the dynamic stress
intensity factor is delayed for a cracked Al/epoxy plate.
Also, the transient response of the dynamic stress inten-
sity factor is more evident for a thin film perfectly
bonded to an edge-cracked layer.

• The free-free type boundaries cause increasing in the dy-
namic stress intensity factor, while the clamped-clamped
type boundaries lead to decreasing in the dynamic stress
intensity factor.
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Appendix
In deriving singular integral equations �33� and �45�, the fol-

lowing results have been used

2


�

0

�

sin 	s cos 	xd	 =
1


	 1

s − x
+

1

s + x

 �A1�

�
0

�
a2 sin 	b

	�	2 + a2�
d	 =



2
�1 − e−ab� a,b � 0 �A2�

Fig. 8 The effects of the thickness of epoxy on kint„t… for
a :c :L=2:1:10 having free-free boundaries

Fig. 9 The effects of the thickness of steel on khom„t… for
a :c :L=2:1:10 having free-free boundaries

Fig. 10 The effects of the thickness of steel on kint„t… for
a :c :L=2:1:10 having free-free boundaries

Fig. 12 The effects of the boundary types on kint„t… for a
cracked Al/epoxy plate with a :c :hII=2:1:0.5 for various values
of L /c
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�
0

�
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	2 + a2 d	 =


2
e−ab a,b � 0 �A3�
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�
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�

exp�− �2n + 1�t� =
1

2 sinh t
�A6�

�
n=1

�

exp�− nt� =
exp�− t/2�
2 sinh t/2

�A7�

In Eq. �33�, the kernel RFF�s ,x , p� takes the form

RFF�s,x,p� = R1�s,x,p� + R2�s,x� + R3�s,x,p� �A8�

R1�s,x,p� =
1

s + x
+ 2�

0

� 	
I

	
tanh 
IL − 1
sin 	s cos 	xd	

�A9�

R2�s,x� = −


L

�I − �II

�I + �II� 1

2 sinh ��2hI − s − x�
−

1

2��2hI − s − x��
�A10�

R3�s,x,p� = −
2

L �
n=0

�  �I�n
I − �II�n

II tanh �n
IIhII

�I�n
I tanh �n

I hI + �II�n
II tanh �n

IIhII

�	�n

�n
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2 cosh �n

I x
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I hI exp�− �n

I hI�sinh��n
I s�

−
1

2

�I − �II

�I + �II exp�− 2�n�2hI − s − x��� �A11�

where in the above expressions, �= /2L, and �n= �2n+1� /2L.
In Eq. �45�, the kernel RCC�s ,x , p� takes the form

RCC�s,x,p� = R4�s,x,p� + R5�s,x� + R6�s,x,p� �A12�

R4�s,x,p� =
1

s + x
+ 2�

0

� 	
I

	
coth 
IL − 1
sin 	s cos 	xd	

�A13�

R5�s,x� = −


L

�I − �II

�I + �II� exp ��s + x − 2hI�
2 sinh ��2hI − s − x�

−
1

2��2hI − s − x��
�A14�

R6�s,x,p� = −
2

L �
n=0

�  �I�n
I − �II�n

II tanh �n
IIhII

�I�n
I tanh �n

I hI + �II�n
II tanh �n

IIhII

�	�n

�n
I 
2 cosh �n

I x

cosh �n
I hI exp�− �n

I hI�sinh��n
I s�

−
1

2

�I − �II

�I + �II exp�− 2�n�2hI − s − x��� �A15�

where �= /2L, and �n=n /L.
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Unified Probabilistic Approach for
Model Updating and Damage
Detection
A probabilistic approach for model updating and damage detection of structural systems
is presented using noisy incomplete input and incomplete response measurements. The
situation of incomplete input measurements may be encountered, for example, during
low-level ambient vibrations when a structure is instrumented with accelerometers that
measure the input ground motion and the structural response at a few instrumented
locations but where other excitations, e.g., due to wind, are not measured. The method is
an extension of a Bayesian system identification approach developed by the authors. A
substructuring approach is used for the parameterization of the mass, damping and
stiffness distributions. Damage in a substructure is defined as stiffness reduction estab-
lished through the observation of a reduction in the values of the various substructure
stiffness parameters compared with their initial values corresponding to the undamaged
structure. By using the proposed probabilistic methodology, the probability of various
damage levels in each substructure can be calculated based on the available dynamic
data. Examples using a single-degree-of-freedom oscillator and a 15-story building are
considered to demonstrate the proposed approach. �DOI: 10.1115/1.2150235�

1 Introduction

The problem of identification of the model parameters of a
linear structural model using dynamic data has received much
attention over the years because of its importance in model updat-
ing, response prediction, structural control and health monitoring.
Many methodologies have been formulated, both in the time and
frequency domain, for the cases of known and unknown input.

Structural health monitoring has been attracting much attention
in the past two decades, including several workshops, e.g., Natke
and Yao �1�; Agbabian and Masri �2�; Chang �3�; and special
issues of journals, e.g., Journal of Engineering Mechanics �July
2000 and January 2004� and Computer-Aided Civil and Infra-
structure Engineering �January 2001�. Many methods have been
developed. One such example is the class of direct methods using
pattern recognition techniques �Mazurek and DeWolf �4�; Hearn
and Testa �5�; Doebling et al. �6�; Lam et al. �7�; Smyth et al. �8��.
Another example is the class of structural model-based inverse
methods �Farhat and Hemez �9�; Pandey and Biswas �10�; Kim et
al. �11�; Topole and Stubbs �12�; Hemez and Farhat �13�; Katafy-
giotis et al. �14�; Doebling et al. �15�; Vanik et al. �16�; Beck et al.
�17�; Sohn and Farrar �18�; Ko et al. �19�; Ching and Beck �20��.

Recent interest has been shown in using Bayesian probabilistic
approaches for model updating and damage detection as they al-
low for an explicit treatment of all the uncertainties involved
�Geyskens et al. �21�; Beck and Katafygiotis �22�; Katafygiotis et
al. �14�; Vanik et al. �16�; Katafygiotis and Yuen �23�; Yuen �24��.
An advantage of the Bayesian approach is that it follows directly
from the probability axioms and so there are no ad-hoc assump-
tions that lead to loss of information. In Beck and Katafygiotis
�22�, a methodology for model updating based on a Bayesian
probabilistic system identification framework was presented. Al-

though the framework is general, their presentation is for the case
where the prediction error due to measurement noise and model-
ing error is modeled as Gaussian white noise.

In the present paper, the prediction error is modeled as the sum
of a filtered white noise process, representing the input error
�measurement noise plus unmeasured excitation� filtered through
the system, plus another independent white noise process, repre-
senting the response measurement noise and modeling error. A
Bayesian time-domain approach for modal identification by Yuen
and Katafygiotis �25� is extended to handle the case of model
updating with incomplete input measurements and with measure-
ment noises in both input and output measurements. The proposed
approach allows for the direct calculation of the probability den-
sity function �PDF� of the model parameters based on the data
which can be then approximated by an appropriately selected
multi-variate Gaussian distribution. By using data from the initial
undamaged state and a later possibly damaged state, the probabil-
ity of damage of various levels in specified substructures may be
calculated. The formulation is presented for linear multi-degree-
of-freedom �MDOF� systems. Examples using noisy simulated
data from a single-degree-of-freedom �SDOF� oscillator and a 15-
story building are given for illustration.

2 Model Formulation

2.1 Class of Structural Models. Consider a class of possible
models for a structural system with Nd degrees of freedom �DOFs�
and equation of motion

Mẍ + Cẋ + Kx = Tg �1�

where M, C, and K are the mass, damping and stiffness matrix of
the system, respectively, g�RNg is the actual forcing vector and
T�RNd�Ng is the forcing distribution matrix. The mass, damping
and stiffness matrices, M, C, and K, are defined in terms of mass,
damping and stiffness parameters �m, �c, and �s by

M = �
j=1

Nsub

M j��m�, C = �
j=1

Nsub

C j��c�, K = �
j=1

Nsub

K j��s� �2�

where Nsub is the number of substructures and M j, C j, and K j are
the contributions to the mass, damping and stiffness matrix of the
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jth substructure, respectively. Note that it is not necessary to re-
quire classical normal modes.

2.2 Stochastic Input Model. Assume that discrete-time input
data �f�k� :k=1, . . . ,N� are available for the excitation where the
index k refers to time �k−1��t with �t being the sampling inter-
val. Define the uncertain input error � f by

g�k� = f�k� + � f�k� �3�

The input error � f is modeled as zero-mean Gaussian discrete
white noise with covariance matrix ��f����, where �� is the pa-
rameter vector defining the covariance matrices of the input and
output errors; this PDF maximizes the information entropy of the
input error for a specified mean and covariance matrix. The com-
ponents of f�k� that correspond to the unobserved excitation com-
ponents of g�k� are set equal to zero. Thus, � f models the input
measurement noise for the observed components and it models the
unobserved excitation for the unobserved components. The advan-
tage of this formulation is that it can handle cases that include
complete excitation measurements, incomplete excitation mea-
surements and no excitation measurements �such as in ambient
vibration tests�.

2.3 Stochastic Output Model. Assume that discrete-time re-
sponse data are available at No observed DOFs where the mea-
sured response z�k��RNo is a linear combination of the model
state vector y�k�= �x�k�T , ẋ�k�T�T and the actual force g�k�, plus an
output error �z�k��RNo that accounts for modeling error and
measurement noise in the response measurements. This output
error is modeled as zero-mean Gaussian discrete white noise with
covariance matrix ��z����. Thus, the measured response is given
by

z�k� = L1y�k� + L2g�k� + �z�k� = L1y�k� + L2f�k� + L2� f�k�

+ �z�k� �4�

where L1�RNo�2Nd and L2�RNo�Ng are observation matrices
that depend on the type of measurements �e.g., displacements or
accelerations�, and y�k� is given by Eq. �1�. Furthermore, the er-
rors �z and � f are modeled as stochastically independent.

2.4 Model and Damage Identification. The parameter vector
� for identification from the excitation and response data is com-
prised of: �1� the mass, damping, and stiffness parameters �m, �c,
and �s that specify the mass matrix M, damping matrix C, and
stiffness matrix K; �2� the parameter vector �� specifying the
covariance matrices for the input and output errors � f and �z,
respectively; and �3� the 2Nd initial conditions for the structural
state. In practice, the system may often be assumed to start from
rest. In such a case, the initial conditions can be treated as known
and equal to zero and can be excluded from the vector � of pa-
rameters for identification.

Let Zm,n and Fm,n denote the response and the excitation mea-
surement matrix from time �m−1��t to �n−1��t, with m�n, re-
spectively,

Zm,n = �z�m�, . . . ,z�n�� and Fm,n = �f�m�, . . . ,f�n��, m � n

�5�

The approach to damage detection is to first use the Bayesian
framework presented in the next section to obtain the updated
PDF �probability density function� p�� �Z1,N ,F1,N� of the param-
eter vector � given the measured input data F1,N and output data
Z1,N where N denotes the total number of points in time where
measurements are available. Then, this is used to compute the
probability of damage of the jth substructure exceeding damage
level d which is defined by

Pj
dam�d� 	 P�� j

pd � �1 − d�� j
ud�F1,N

ud ,Z1,N
ud ,F1,N

pd ,Z1,N
pd � �6�

where subscripts “ud” and “pd” refer to undamaged and possibly
damaged cases. Equation �6� gives the probability that the sub-
structure stiffness parameter has decreased by a fractional amount
of more than d. Based on the Gaussian approximation of the up-
dated PDFs for � j

ud and � j
pd, one can easily calculate the probabil-

ity damage as follows �Yuen et al. �26��

Pj
dam�d� 
 �� �1 − d��̂ j

ud − �̂ j
pd

��1 − d�2�	̂ j
ud�2 + �	̂ j

pd�2
 �7�

where ��·� is the standard Gaussian cumulative distribution func-

tion; �̂ j
ud and �̂ j

pd denote the most probable values of the stiffness
parameters for the undamaged and �possibly� damaged structure,
respectively; and 	̂ j

ud and 	̂ j
pd are the corresponding standard de-

viations of the stiffness parameters determined from the inverse of
the Hessian matrix of the negative logarithm of the joint updated
parameter PDF �Beck and Katafygiotis �22��.

3 Bayesian Model Updating

3.1 Exact Formulation of Updating. Using Bayes’ theorem,
the expression for the updated �posterior� PDF of the parameters �
given the measured response Z1,N and the measured input F1,N is

p���Z1,N,F1,N� = c1p���p�Z1,N��,F1,N� �8�

where c1 is a normalizing constant such that the integral of the
right hand side of Eq. �8� over the domain of � is equal to unity.
We interpret p�� �Z1,N ,F1,N� as giving a measure of the plausibil-
ity of the values of � based on the data �Jaynes �27��. The factor
p��� in Eq. �8� denotes the prior PDF of the parameters and it may
be chosen based on engineering judgment. It may be treated as
constant �noninformative prior� if all values of the parameters
over some large but finite domain are felt to be equally plausible
a priori. The likelihood p�Z1,N �� ,F1,N� is the dominant factor on
the right hand side of Eq. �8�. It reflects the contribution of the
measured data Z1,N and F1,N in establishing the updated PDF of �.
Also, in order to establish the most probable �plausible� value of

�, denoted by �̂, one therefore needs to maximize
p���p�Z1,N �� ,F1,N�.

Since linear systems are considered and both the uncertain in-
put and output measurement noise and unmeasured excitation are
modeled as Gaussian, it follows that the likelihood p�Z1,N �� ,F1,N�
in Eq. �8� is an NoN-variate Gaussian distribution with appropri-
ately calculated mean and covariance matrix. Direct calculation of
this function for different values of � becomes computationally
prohibitive for a large number N of data, as it requires repeated
calculation of the determinant and inverse of the corresponding
very high-dimensional NoN�NoN covariance matrices. Thus, al-
though Eq. �8� offers a theoretically exact solution to the model
updating problem, its computational implementation poses a chal-
lenge. In the next section, an approximation is presented which
overcomes this difficulty and renders the Bayesian model updat-
ing problem computationally feasible.

3.2 Proposed Approximation for the Likelihood. The PDF
p�Z1,N �� ,F1,N� in Eq. �8� can be written as a product of condi-
tional PDFs

p�Z1,N��,F1,N� = p�Z1,Np
��,F1,N� �

k=Np+1

N

p�z�k���,Z1,k−1,F1,N�

�9�

The following approximation is introduced �25�
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p�Z1,N��,F1,N� 
 p�Z1,Np
��,F1,N� �

k=Np+1

N

p�z�k���,Zk−Np,k−1,F1,N�

�10�

Here, each conditional PDF factor depending on all the previous
response measurements is approximated by a conditional PDF de-
pending on only the most recent Np response measurements. The
sense of this approximation is that response measurements too far
in the past do not provide significant information about the present
observed response. Of course, one expects this to be true if Np is
so large that all the correlation functions have decayed to very
small values. However, it is found that a significantly smaller
value of Np suffices for the approximation in Eq. �10� to be valid
for practical purposes. In particular, it is found that a value for Np
of the order of T1 /�t is sufficient, where T1 is the fundamental
period of the system and �t is the sampling interval. For example,
assuming �t= 1

25T1, it follows that a value of Np=25 is sufficient.
The advantage of the approximation in Eq. �10� will become ob-
vious in the subsequent sections where the expressions for com-
puting the factors on the right hand side of Eq. �10� are given. In
Sec. 3.2.1, the expression for the first factor p�Z1,Np

�� ,F1,N� in
Eq. �10� is given. In Sec. 3.2.2, a general expression for the con-
ditional PDF p�z�k� �� ,Zk−Np,k−1 ,F1,N� in Eq. �10� is derived.
Based on these results, p�Z1,N �� ,F1,N� can be computed effi-
ciently from Eq. �10�.

The most probable parameters �̂ can then be obtained by mini-
mizing J���=−ln�p���p�Z1,N �� ,F1,N��. Also, the updated PDF of
the parameters � can be well approximated by a Gaussian distri-

bution N��̂ ,H��̂�−1� with mean � and covariance matrix H��̂�−1,

where H��̂� denotes the Hessian of J��� calculated at �= �̂ �Beck
and Katafygiotis �22��.

3.2.1 Expression for p�Z1,Np
�� ,F1,N�. Since the joint PDF

p�Z1,Np
�� ,F1,N� follows an NoNp-variate Gaussian distribution, it

is specified by the mean and covariance matrix of Z1,N. Expres-
sions for the mean and covariance are derived as a function of the
identification parameter vector � as follows.

The equation of motion �1� can be rewritten in a state space
form for the structural state vector y	�xT , ẋT�T

ẏ = Ay + Bg �11�

where the system matrices A�R2Nd�2Nd and B�R2Nd�Ng are
given by

A = � 0Nd
INd

− M−1K − M−1C
� �12�

and B=� 0Nd

M−1
�T. Here, 0Nd

and INd
denote the Nd�Nd zero and

identity matrix, respectively.
The continuous-time differential Eq. �11� is approximated by

the following difference equation

y�k + 1� = Ady�k� + Bdg�k� �13�

where y�k� denotes the structural state vector at time tk= �k
−1��t, Ad	eA�t and Bd	A−1�Ad−I2Nd

�B. For notation conve-
nience, denote the relationship between the state vector and the
input of the above system using the function L

y�k� 	 L�k;�,G1,N�, k � N �14�

where � is the vector comprised of the model parameters for iden-
tification described earlier and G1,N denotes, in analogy to the
definition of Eq. �5�, the matrix comprised of the actual input
force time history up to time �N−1��t, i.e., G1,N
= �g�1� ,g�2� , . . . ,g�N��.

It can be easily shown using Eq. �4� that the mean ��k�
	E�z�k� �� ,F1,N� is given by

��k� = L1L�k;�,F1,N� + L2f�k� �15�

Thus, ��k� is equal to the model response calculated assuming
that the only input is the measured excitation. The difference be-
tween z�k� and ��k� is the prediction error v�k�

v�k� = z�k� − ��k� �16�

It is worth noting that ��k� in Eq. �15� can be simply calculated
using the function “lsim” in MATLAB �28�. Collecting all the terms
calculated by Eq. �15�, E�Z1,Np

�� ,F1,N� is given by

E�Z1,Np
��,F1,N� = ���1�T, . . . ,��Np�T�T �17�

The covariance matrix �Z,Np
	E��Z1,Np

−E�Z1,Np
�� ,F1,N��

��Z1,Np
−E�Z1,Np

�� ,F1,N��T� is given by

�Z,Np
= ��v�1,1� ¯ �v�1,Np�

� ]

sym �v�Np,Np�
� �18�

where �v�m ,n�, m�n, can be approximated by �see Appendix A�

�v�m,n� 
 L1S
�Ad
T�n−mL1

T + L2��fBd
T�Ad

T�n−m−1L1
T�1 − �m,n�

+ �L2��fL2
T + ��z��m,n �19�

where �m,n is the Kronecker delta and the matrix S
 can be ob-
tained by solving the Lyapunov equation in discrete form �Lin
�29��

S
 = AdS
Ad
T + Bd��fBd

T �20�

Furthermore, �v�n ,m�=�v�m ,n�T, m�n, defines the elements in
the lower triangle.

The joint PDF p�Z1,Np
�� ,F1,N� is then the NoNp-variate Gauss-

ian distribution

p�Z1,Np
��,F1,N� =

1

�2��NoNp/2��Z,Np
�1/2

�exp�−
1

2
�Z1,Np

− E�Z1,Np
��,F1,N��T

��Z,Np

−1 �Z1,Np
− E�Z1,Np

��,F1,N��� �21�

3.2.2 Expression for p�z�k� �� ,Zk−Np,k−1 ,F1,N�. Define the vec-
tor W�k�, kNp, as follows: W�k�= �z�k�T ,z�k−1�T , . . . ,z�k
−Np�T�T, which is comprised of all the response measurements
appearing in p�z�k� �� ,Zk−Np,k−1 ,F1,N�. Specifically, W�k� consists
of z�k� followed by all vector elements of Zk−Np,k−1 ordered in a
descending time index order. Next, the expressions for the mean
value and the covariance of the Gaussian joint PDF
p�W�k� �� ,F1,N� are derived.

Clearly, the expected value of the vector W�k� given � and F1,N
is given by

E�W�k���,F1,N� = ���k�T,��k − 1�T, . . . ,��k − Np�T�T �22�

where ��k� is given by Eq. �15�. The covariance matrix �W�k�
=E��W�k�−E�W�k� �� ,F1,N���W�k�−E�W�k� �� ,F1,N��T� given
F1,N is easily shown to be

�W�k� = � �v�k,k� sym

] �

�v�k − Np,k� ¯ �v�k − Np,k − Np�
� �23�

where �v�m ,n�, m�n is given by Eq. �19� and �v�n ,m�
=�v�m ,n�T, m�n. Therefore, the joint PDF p�W�k� �� ,F1,N�,
Np+1�k�N, is an No�Np+1�-variate Gaussian distribution with
mean given by Eq. �22� and covariance matrix �W�k� given by Eq.
�23� which is independent of k when the approximation for
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�v�m ,n� in Eq. �19� is used. Then, the matrix �W is partitioned as
follows:

�W = ��11 �12

�12
T �22

� �24�

where �11, �12, and �22 have dimensions No�No, No�NoNp, and
NoNp�NoNp, respectively.

The mean and covariance matrix for the No-variate Gaussian
PDF p�z�k� �� ,Zk−Np,k−1 ,F1,N� can be determined from the corre-
sponding mean and covariance matrix for W�k� given � and F1,N.
The mean e�k�	E�z�k� �� ,Zk−Np,k−1 ,F1,N� is given by

e�k� = ��k� + �12�22
−1�v�k − 1�T,v�k − 2�T, . . . ,v�k − Np�T�T

�25�

where ��k� is given by Eq. �15� and the prediction errors v�m�,
m=k−Np , . . . ,k−1, are given by Eq. �16�. The covariance matrix
��,Np

�k� of the error ��k�=z�k�−e�k� is given by

��,Np
�k� 	 E���k���k�T� = �11 − �12�22

−1�12
T �26�

which does not depend on k when the approximation for �v�m ,n�
in Eq. �19� is used. Thus, the conditional PDF
p�z�k� �� ,Zk−Np,k−1 ,F1,N� is given by the following Gaussian dis-
tribution

p�z�k���,Zk−Np,k−1,F1,N� 

1

�2��No/2���,Np
�1/2 exp�−

1

2
�z�k�

− e�k��T��,Np

−1 �z�k� − e�k��� �27�

where e�k� is given by Eq. �25� and ��,Np
is given by Eq. �26�. It

is of interest to note that this probability distribution is equivalent
to taking an auto-regressive model of order Np for the prediction
error v�k� in Eq. �16�.

The advantage of the approximation introduced in Eq. �10� is
that all the conditional PDFs on the right hand side of Eq. �10� are
conditioned on exactly Np previous response measurement points
and follow an No-variate Gaussian distribution with approxi-
mately the same covariance matrix ��,Np

which, therefore, needs
to be calculated only once for a given parameter set �. Thus, to
compute p�Z1,N �� ,F1,N�, one needs to calculate the inverse and
the determinant of only the matrices �Z,Np

, �22, and ��,Np
, of

dimension NoNp�NoNp, NoNp�NoNp, and No�No, respectively.
This effort is much smaller than that required in an exact formu-
lation where one needs to calculate the inverse and the determi-
nant of a matrix of dimension NoN�NoN, where N�Np in gen-
eral.

4 Illustrative Examples

4.1 Example 1: SDOF Oscillator. Consider a SDOF oscilla-
tor of mass m=1 kg subjected to external force f�t� and base
acceleration ẍg�t�, as shown in Fig. 1. Here, f�t� is white noise
with spectral intensity Sf0=0.02 N2 s and the base acceleration is
taken to be the 1940 El-Centro earthquake record in the N-S di-

rection. The parameters �̃= �k̃ , c̃ , 	̃�f , 	̃�z�T used to generate the

simulated data are: k̃=100.0 N/m, c̃=0.04 N s/m �corresponding

to damping ratio of 2.0%�, S̃f0=0.02 N2 s, 	̃�f =2.5005 N and
	̃�z=0.0036 m. The chosen value of 	̃�f corresponds to the stan-
dard deviation combining the unmeasured input f and 10% mea-
surement noise of the measured input ẍg. Also, the chosen value of
	̃�z corresponds to a 10% rms output-error level, i.e., the noise is
10% of the rms of the noise-free response. The sampling time step
is taken to be 0.02 s and the total time interval is T=50 s, about
80 fundamental periods, so that the number of data points is N
=2500.

Table 1 refers to the identification results using a single set of

displacement response measurements Ẑ1,N and base acceleration

measurements F̂1,N. It shows the exact values of the parameters,

the most probable values �̂= �k̂ , ĉ , 	̂�f , 	̂�z�T, the calculated stan-
dard deviations for the Gaussian approximation of the joint PDF
of k, c, 	�f, and 	�z, the coefficient of variation for each param-
eter and the value of a “normalized error” � for each parameter.
The parameter � represents the absolute value of the difference
between the identified value and exact value, normalized with
respect to the corresponding calculated standard deviation. Here,
the value Np=30 �corresponding to one period of the oscillator�
was used in Eq. �10�. Note that the order of the square matrices
that need to be inverted by the proposed approach is Np=30 which
is much smaller than N=2500 in an exact formulation. Repeating
the identification with a value of Np=60 yielded identical results
to the accuracy shown, verifying that using Np=T1 /�t is
sufficient.

Figure 2 shows contours in the �k ,c� plane of the marginal

updated PDF p�k ,c � Ẑ1,N , F̂1,N� calculated for the set of simulated
data used for Table 1. Figure 3 shows a comparison between the

conditional PDFs p�k � Ẑ1,N , F̂1,N , ĉ , 	̂�f , 	̂�z� and

p�c � Ẑ1,N , F̂1,N , k̂ , 	̂�f , 	̂�z�, respectively, obtained from: �i� Eqs.
�8� and �10� �crosses� and �ii� the Gaussian approximation

N��̂ ,H��̂�−1� described in Sec. 3.2 �solid�. It is seen that the pro-
posed Gaussian approximation is very accurate. Thus, the inverse

Hessian matrix H��̂�−1 can be used to calculate the covariance
matrix for the uncertainty in the value of the parameter �, given

the data Ẑ1,N and F̂1,N. In particular, this gives the variance

	2�� j � Ẑ1,N , F̂1,N� in Table 1 for each parameter � j of �.
Another set of data is simulated with the same parameters ex-

cept that the stiffness is reduced by 5%, i.e., k=95 N/m, to simu-
late damage. Identification results are shown in Table 2. By using
the posterior PDFs for the undamaged and damaged oscillator, the
probability of damage with respect to the fractional damage level
d can be obtained. Figure 4 shows the probability of damage for
different threshold levels d. It can be seen that it is almost with
probability 1 that there is stiffness reduction in the damaged case.
Furthermore, this damage is likely to be within the range from 0%
to 10%, with median 5.6% and standard deviation 1.7%. The pro-
posed approach is capable of indicating such a small level of
damage with only a small amount of response data and unmea-
sured excitation that contributes about 63% of the rms response.

Fig. 1 Single-degree-of-freedom oscillator model „Example 1…

Table 1 Identification results of the stiffness parameters of the
oscillator „Example 1…

Parameter Actual �̃ Optimal �̂ S.D. 	 COV � �

k 100.00 100.32 1.3490 0.014 0.23
c 0.4000 0.5423 0.1391 0.348 1.02

	�f
2.5005 2.4476 0.0939 0.038 0.56

	�z
0.0036 0.0035 0.0001 0.016 1.24
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Fig. 2 Contours of the updated PDF projected onto the „k ,c… plane of the undamaged oscillator „Ex-
ample 1…

Fig. 3 Gaussian approximation for the conditional PDFs of the stiffness and damping coefficient of
the undamaged oscillator „Example 1…
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4.2 Example 2: Fifteen-Story Building Subjected to Earth-
quake and Wind Excitation. The second example uses simulated
response data from the 15-story building shown in Fig. 5. The
story height is 2.5 m. This building has uniformly distributed floor

mass �100 ton each� and uniform story stiffness �k̃ j =6.011
�105 kN/m, j=1,2 , . . . ,15�, so that the first four modal frequen-
cies are 1.250, 3.737, 6.186, and 8.571 Hz, respectively. Rayleigh
damping is chosen so the damping matrix is given by C=�MM
+�KK, where �̃M =0.1177 s−1 and �̃K=0.0006383 s are used to
simulate the data. As a result, the damping ratios of the first two
modes are 1.0%.

For both undamaged and damaged cases, we assume that the
measured response corresponds to the absolute acceleration at the
2nd, 5th, 8th, 11th and 14th DOF over a time interval T=60 s with
a sampling interval �t=0.01 s. Therefore, the total number of
measured time points is N=6000 and corresponds to 48 funda-
mental periods.

The undamaged structure is subjected to stationary wind exci-
tation �unmeasured� which has a uniform spectral intensity, Sf0
=5.0 kN2 s, at all DOFs and a correlation coefficient exp�−y /R�,
where y denotes the distance between two DOFs and R is a cor-

Fig. 4 Probability of damage for the stiffness „Example 1…

Fig. 5 Fifteen-story building model „Example 2…

Table 2 Identification results of the stiffness parameters of the
damaged oscillator „Example 1…

Parameter Actual �̃ Optimal �̂ S.D. 	 COV � �

k 95.000 94.707 1.0805 0.011 0.27
c 0.4000 0.4099 0.1133 0.283 0.09

	�f
2.5005 2.5983 0.1059 0.042 0.93

	�z
0.0038 0.0039 0.0001 0.016 1.34
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relation distance, which is taken to be 10 m in the simulation of
the data, but it is assumed unknown in the identification phase.
The measurement noise for the response is taken to be 5%, i.e.,
the rms of the measurement noise for a particular channel of mea-
surement is equal to 5% of the rms of the noise-free signal of the
corresponding quantity. Identification using the proposed ap-
proach is carried out with a value of Np=100, which corresponds
to using previous data points of just over one fundamental period

as the conditioning information at each time step in Eq. �10�.
The stiffness and damping are based on the following non-

dimensional scaling parameters: stiffness parameters, � j , j
=1,2 , . . . ,15 and damping parameters, ��M

and ��K
, that is, kj

=� jk̃ j, �M =��M
�̃M, and �K=��K

�̃K. Table 3 shows the identifica-
tion results for the undamaged structure. The second column in
this table corresponds to the actual values of the parameters used
for generation of the simulated measurement data; the third and
fourth columns correspond to the most probable values and the
calculated standard deviations, respectively; the fifth column lists
the coefficient of variation for each parameter; and the last column
shows the normalized error � described in Example 1. One ob-
serves that in all cases the actual parameters are at reasonable
distances, measured in terms of the estimated standard deviations,
from the most probable values, which confirms that the calculated
uncertainties are consistent.

Figure 6 shows the contours in the ��1 ,�2� plane of the mar-
ginal updated PDF of �1 and �2. Figure 7 is a typical plot showing
comparisons between the conditional PDFs of �1 and �2 �keeping
all other parameters fixed at their most probable values� obtained
from: �i� Eqs. �8� and �10� �crosses� and �ii� the Gaussian approxi-

mation N��̂ ,H��̂�−1� described in Sec. 3.2 �solid�. It is seen that
the proposed Gaussian approximation is very accurate.

Next, damage is introduced by reducing the interstory stiffness
of the first and third story by 15% and 10%, respectively. The
damaged structure is subjected to wind excitation and earthquake
ground motion. The wind excitation is assumed to have spectral
intensity 2.5 kN2 s with the same correlation model as before and
the earthquake ground acceleration is taken to be equal to a 25%
scaled version of the 1940 El-Centro earthquake N-S record.

Table 3 Identification results of the undamaged structure „Ex-
ample 2…

Parameter Actual �̃ Optimal �̂ S.D. 	 COV � �

�1
1.0000 0.9978 0.0175 0.018 0.13

�2
1.0000 0.9909 0.0161 0.016 0.56

�3
1.0000 0.9939 0.0131 0.013 0.46

�4
1.0000 1.0071 0.0159 0.016 0.45

�5
1.0000 1.0224 0.0125 0.013 1.79

�6
1.0000 0.9849 0.0119 0.012 1.26

�7
1.0000 0.9848 0.0133 0.013 1.14

�8
1.0000 1.0228 0.0127 0.013 1.79

�9
1.0000 0.9779 0.0119 0.012 1.86

�10
1.0000 0.9987 0.0135 0.014 0.10

�11
1.0000 1.0076 0.0112 0.011 0.68

�12
1.0000 0.9812 0.0107 0.011 1.76

�13
1.0000 1.0083 0.0139 0.014 0.59

�14
1.0000 1.0187 0.0093 0.009 2.01

�15
1.0000 1.0047 0.0082 0.008 0.57

��M
1.0000 1.0062 0.4969 0.497 0.01

��K
1.0000 1.0165 0.0236 0.024 0.70

R 10.000 10.370 0.3753 0.038 0.99

Fig. 6 Contours of the updated PDF projected onto the „�1 ,�2… plane of the undamaged structure „Example
2…
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Again, the wind excitation is assumed not to be measured but the
earthquake ground motion is assumed to be measured with 5%
measurement noise by a sensor at the base.

Figure 8 shows the displacement time histories at the first floor
and the contribution from the earthquake only. Since the identifi-
cation is based on acceleration, these data are assumed not to be
available. It is shown here only for demonstration purposes. It can
be seen that the earthquake ground motion dominates the response
during the first 15 s but its contribution at later times is compa-
rable with that from the wind excitation. If only the earthquake
ground motion is considered, identification results will be poor,
especially for the damping parameters, because the earthquake
ground motion does not have much energy towards the end to
explain the corresponding relatively strong response at these later
times. Much smaller damping values, or even negative ones, will
be identified in such case.

Identification results for the damaged structure are shown in
Table 4. By using the posterior PDFs for the undamaged and
damaged building, the probability of damage with respect to the
fractional damage level can be obtained. Figure 9 shows the prob-
ability of damage with different threshold levels d. It can be seen
that it is almost with probability 1 that there is stiffness reduction
at the first and the third story. Furthermore, these damage levels
have medians 14.8% and 10.5% and standard deviations 2.2% and
2.1%, respectively. The proposed approach is able to identify suc-
cessfully both the location and severity of the damage. If a higher
precision for the damage severity is desired, one solution is to
obtain longer records of the structural excitation and response.

5 Concluding Remarks
A Bayesian approach to damage detection, location and assess-

ment is presented using noisy incomplete excitation and response
data. It is based on an approximate conditional probability density
expansion of the updated PDF of the model parameters of a linear
MDOF system using dynamic data. The updated posterior PDF
can be accurately approximated by a multi-variate Gaussian dis-

tribution where the calculated mean and covariance matrix offer
an estimate of the most probable values of the model parameters
and their associated uncertainties. The updated PDFs from data in
the undamaged state and in a possibly damaged state are used to
calculate the probability of damage of different severity levels in
each substructure. The approach was shown to successfully deter-
mine the location and probable level of damage from noisy in-
complete data.
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Appendix A
Using Eqs. �4� and �13�–�15�, the prediction error v�k� can be

expressed as follows

v�k� = z�k� − ��k�

= L1L�k;��,�� f�1�, . . . ,� f�k − 1��� + L2� f�k� + �z�k�

= L1�
m=1

k−1

Ad
m−1Bd� f�k − m� + L2� f�k� + �z�k� �28�

where the parameter vector �* has zero initial conditions and all
other parameters are equal to the corresponding parameters in �.

The covariance matrix �v�k ,k+r�	E�v�k�vT�k+r��, r�0, is
given by

�v�k,k + r� = L1��
m=1

k−1

Ad
m−1Bd��fBd

T�Ad
T�m−1��Ad

T�rL1
T

+ L2��fBd
T�Ad

T�r−1L1
T�1 − �r,0� + �L2��fL2

T + ��z��r,0

�29�

Fig. 7 Gaussian approximation for the conditional PDFs of the stiffness parameters �1 and �2
of the undamaged structure „Example 2…

562 / Vol. 73, JULY 2006 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.29. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The sum Sk=�m=1
k−1 Ad

m−1Bd��fBd
T�Ad

T�m−1 can be calculated by
solving the following Lyapunov equation in discrete form �29�

Sk = AdSkAd
T + �Bd��fBd

T − Ad
k−1Bd��fBd

T�Ad
T�k−1� �30�

For dissipative dynamical systems, the two-norm of the matrix
Ad is less than unity, i.e., �Ad�2�1. As a result, the term
Ad

k−1Bd��fBd
T�Ad

T�k−1→0 for large k. Therefore, Eq. �30� can be
approximated by

S
 = AdS
Ad
T + Bd��fBd

T �31�

The advantage of this approximation is that the matrix S
 is no
longer dependent on k, which improves the computational effi-
ciency significantly.

Thus, the covariance matrix �v�k ,k+r�, r�0, is readily ob-
tained:

�v�k,k + r� = L1S
�Ad
T�rL1

T + L2��fBd
T�Ad

T�r−1L1
T�1 − �r,0�

+ �L2��fL2
T + ��z��r,0 �32�

Note that the right hand side of this expression does not depend on
k.

Fig. 8 Response time history „top… and its contribution from the earthquake only „bottom… at the first floor
of the damaged structure „Example 2…

Table 4 Identification results of the damaged structure „Ex-
ample 2…

Parameter Actual �̃ Optimal �̂ S.D. 	 COV � �

�1
0.8500 0.8495 0.0125 0.015 0.04

�2
1.0000 1.0103 0.0136 0.014 0.76

�3
0.9000 0.8887 0.0110 0.012 1.03

�4
1.0000 0.9938 0.0142 0.014 0.44

�5
1.0000 1.0074 0.0126 0.013 0.59

�6
1.0000 0.9758 0.0117 0.012 2.06

�7
1.0000 1.0214 0.0149 0.015 1.43

�8
1.0000 0.9979 0.0124 0.012 0.17

�9
1.0000 0.9759 0.0116 0.012 2.07

�10
1.0000 1.0293 0.0145 0.015 2.02

�11
1.0000 0.9971 0.0115 0.012 0.26

�12
1.0000 0.9981 0.0108 0.011 0.18

�13
1.0000 1.0129 0.0140 0.014 0.92

�14
1.0000 1.0062 0.0098 0.010 0.63

�15
1.0000 1.0024 0.0081 0.008 0.29

��M
1.0000 1.0149 0.2823 0.282 0.05

��K
1.0000 1.0248 0.0234 0.023 1.06

R 10.000 10.007 0.3649 0.037 0.02 Fig. 9 Probability of damage for the stiffness parameters �j, j
=1, . . . ,15 „Example 2…
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Multidomain Topology
Optimization for Structural and
Material Designs
A multidomain topology optimization technique (MDTO) is developed, which extends the
standard topology optimization method to the realm of more realistic engineering design
problems. The new technique enables the effective design of a complex engineering
structure by allowing the designer to control the material distribution among the subdo-
mains during the optimal design process, to use multiple materials or composite materi-
als in the various subdomains of the structure, and to follow a desired pattern or ten-
dency for the material distribution. A new algorithm of Sequential Approximate
Optimization (SAO) is proposed for the multidomain topology optimization, which is an
enhancement and a generalization of previous SAO algorithms (including Optimality
Criteria and Convex Linearization methods, etc.). An advanced substructuring method
using quasi-static modes is also introduced to condense the nodal variables associated
with the multidomain topology optimization problem, especially for the nondesign sub-
domains. The effectiveness of the new MDTO approach is demonstrated for various
design problems, including one of “structure-fixture simultaneous design,” one of “func-
tionally graded material design,” and one of “crush energy management.” These case
studies demonstrate the potential significance of the new capability developed for a wide
range of engineering design problems. �DOI: 10.1115/1.2164511�

Introduction
Topology optimization has received extensive attention in the

literature in recent years, and a number of review papers and
books have been published on this topic �1–5�. Significant
progress has been made through the use of a variety of approaches
�also see �1–5��. Among various proposed approaches, a notable
idea in modern topology optimization is to transform the topology
optimization problem into an equivalent problem of “optimum
material distribution” �OMD�. For example, in the Homogeniza-
tion Based Topology Optimization �HBTO� method �6� the mate-
rial is distributed by considering specific “microstructures” in the
design domain, and the structure is consequently optimized by
varying the design variables associated with these “microstruc-
tures.” The HBTO method has been extended to various applica-
tions areas, including structural design and material design �3–5�.
It has also been applied to design problems for achieving static
stiffness �6–8�, mechanical compliance �9–11�, desired eigenfre-
quencies �12–15�, dynamic response characteristics �16,17�, and
other applications �3–5�.

In the standard HBTO method, the structure is optimized within
a single structural domain, subject to a given amount of the ma-
terial for the entire structure. The optimization process determines
the material distribution automatically, and there is no interaction
with the designer. This process leaves little flexibility to the de-
signer to control the material distribution in a way that may be
desired. For example, based on previous experience, a designer
may want to distribute more material in a certain region of the
structure and less material in another region, etc. In general, the
engineering design of a complex structure, such as an automotive
vehicle structure, would benefit from having the designer hold

more control over the material distribution, so that the final design
can reflect valuable designer intuition and experience. A number
of important applications can be pointed out that would result
directly from having this capability. For instance, in a “structure-
fixture simultaneous design” problem, the designer may want to
assign different amounts of the material �or different materials� to
the “structure” domain and the “fixture” domain. In a “function-
ally gradient material” design problem, the designer may want to
distribute the material in such a way that the material density is
gradually reduced �or increased� along a certain direction. In a
“crush energy management” design problem, more material may
need to be assigned to a region where buckling is not allowed to
occur, while less material may be placed where buckling is de-
sired in a crush event. Furthermore, the intuition of a designer can
be used to improve manufacturability of a prototype design by
visually controlling material distribution to the subdomains. In
this paper, it is demonstrated how the standard topology optimi-
zation method can be extended into a multidomain topology opti-
mization �MDTO� technique, by allowing for the assignment of
different amounts of the material, as well as of different materials,
to the various subdomains of a structure.

The multidomain topology optimization developed in this paper
employs a new optimization algorithm, which is based on a Gen-
eralized Sequential Approximate Optimization �GSAO� method
developed by Ma and Kikuchi �18�. Here the GSAO algorithm is
enhanced for the special class of topology optimization problems.
The new algorithm extends the capabilities of the standard topol-
ogy optimization technique significantly, by using advanced up-
dating rules, providing additional flexibility to switch between
different updating rules, and offering more appropriate and effec-
tive control parameters for the optimization process algorithm.
These enhancements result in improved convergence, higher com-
putational efficiency, and a more stabilized �smoothed� iterative
process for both free �eigenvalue� and forced dynamic response
problems. In addition to the new optimization algorithm, the
MDTO approach also employs an advanced Component Mode
Synthesis �CMS� method �19�, in which a complex structure is
decomposed into a number of simpler substructures that can be
solved for easily and efficiently. The CMS method can signifi-
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cantly extend the domain of solvability of topology optimization
for practical engineering design problems, which is usually lim-
ited by the computer memory available as well as by the compu-
tational time and cost. The CMS approach makes it possible to
deal with a structural model of very large size, since it yields a
considerable reduction of the number of inactive degrees of free-
dom associated with the subdomains, especially for subdomains
whose design is fixed at the current design or at the current itera-
tion step. One further advantage of CMS is that structural reanaly-
sis time is significantly reduced when design changes are limited
to a few of the subdomains. The various examples presented in
this paper illustrate how the new MDTO technique developed can
be applied effectively to a wide range of topology optimization
problems.

Topology Optimization
A technique for the topology optimization of structural systems

was first developed by Bendsøe and Kikuchi in 1988 �6�, and it
has since become known as the homogenization-based topology
optimization �HBTO� method. The basic idea in HBTO is to trans-
form the optimal topology design problem into an equivalent Op-
timal Material Distribution �OMD� problem �6�, as illustrated in
Fig. 1. Here the structural domain is assumed to be filled with a
nonhomogeneous composite material characterized by a variable
microstructure. A typical microstructure is formed inside an empty
rectangle in a unit cell with three design variables a, b, and �,
which are dimensions and orientation of the microstructure, re-
spectively. Using homogenization, the effective material constants
can be obtained as �17�:

DH = DH�a,b,��, �H = �H�a,b� �1�

where DH denotes the effective elastic coefficient matrix at the
material point, and �H is the associated effective mass density.
Both DH and �H are functions of the design variables a and b, and
DH is also a function of the orientation variable � at the material
point.

Using a standard finite element method, the state equation gov-
erning the dynamic response of the general structure shown in
Fig. 1 can be obtained as:

Mü + Cu̇ + Ku = f �2�

where M, C, and K are the global mass, damping, and stiffness
matrices of the structure, respectively. M and K can be obtained
by assembling the elementary mass and stiffness matrices as

M = A
e=1

nel

me and K = A
e=1

nel

ke �3�

where me=me�ae ,be� and ke=ke�ae ,be ,�e� are the mass and stiff-
ness matrices of the finite element e, which are functions of ae, be,
and �e, where ae, be, and �e are the discretized design variables of
a, b, and �, respectively, at the elementary level �e=1,2 , . . . ,nel�.
In the special case of proportional damping, the viscous damping
matrix C in Eq. �2� can be written as C=�K, where � is the
damping coefficient.

Multidomain Topology Optimization
Multidomain topology optimization �MDTO� can be considered

as a natural generalization of the standard, single-domain topol-
ogy optimization discussed in the previous section. In contrast to
single-domain optimization, in which a given amount of the ma-
terial is assigned to the entire design domain, MDTO allows the
designer to assign different amounts of the material, or even dif-
ferent materials, to the various subdomains of the structure. For
example, Fig. 2 depicts a structural domain that is divided into
three subdomains, where a certain amount of material A is as-
signed to subdomain 1, a different amount of material B is dis-
tributed into subdomain 2, and subdomain 3 is considered as a
nondesign domain, for which the material distribution is not al-
lowed to change at the current design stage. In general, a MDTO
problem is defined as a topology optimization problem that has
multiple �design and nondesign� domains; each design domain can
be assigned a special amount of material �or material density�,
with option to distribute multiple materials in different design
domains or in the same design domain. The objective function of
the MDTO problem can be related to the performance/
functionality of the whole structure or to that of a single domain
or of multiple domains considered in the design problem.

The MDTO problem discussed in this paper is formulated as

Minimize f�X�

Subject to: hj�X� � 0 �j = 1,2, . . . ,m�

x� i � xi � x̄i �i = 1,2, . . . ,n�

�and state equations� �4�

where f = f�X� denotes the objective function, which can be the
compliance �or static stiffness� �6�, the mean eigenvalue �13–15�,
the frequency response �16,17�, the mutual energy �9–11�, or a
combination of the aforementioned objectives, or any others; hj
=hj�X� denotes the jth constraint function for the volume �or
weight� of the jth substructure in the jth subdomain �where j
=1,2 , . . . ,m�; m is the total number of the subdomains;
X= �x1 ,x2 , . . . ,xn�T denotes the vector of the design variables,
which includes ae, be, and �e �e=1,2 , . . . ,nel� defined previously,

Fig. 1 Basic concept of the homogenization-based topology
optimization method

Fig. 2 A multidomain topology optimization problem
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where n is the total number of the design variables; and x� i and x̄i
are the lower and upper bounds of design variable xi, respectively.
Note that f�X� in Eq. �4� also needs to satisfy the state equations
for the structural problem at hand. These state equations may in-
clude, for example, the static equilibrium equation, the equation
that defines the free vibration eigenvalue problem, or the equation
for the dynamic forced response. Other additional constraint func-
tions can also be considered in Eq. �4�. Also note that since ori-
entation variables �e �e=1,2 , . . . ,nel� can be determined sepa-
rately using either principal stress direction or an analytical
updating equation in �17�, in following discussions, we assume
that design variable vector X in Eq. �4� contains only ae’s and
be’s.

Various optimization algorithms can be used to solve the opti-
mization problem, Eq. �4�. In this paper, we introduce a new al-
gorithm based on the GSAO method developed by Ma and Kiku-
chi �18�. This algorithm can be considered as an extension of the
algorithm used in the earlier stage of the topology optimization by
Bendsøe and Kikuchi �6�, and it can also be regarded as an exten-
sion of various popular optimization algorithms developed for
structural optimization problems of large size. The new algorithm
is described in the following section.

Optimization Algorithm
Topology optimization problems usually involve very large

numbers of design variables, and thus require a highly efficient
optimization algorithm. Because traditional mathematical pro-
gramming methods are not practical for dealing with such large
numbers of design variables, optimality criteria �OC� �20� and
sequential approximate optimization �SAO� �18� methods are
typically employed. Here, we consider the OC method �e.g., that
used by Bendsøe and Kikuchi �6�� as a special case of the SAO
methods �see �18� for an explanation�. Other SAO methods, in-
cluding Sequential Linear Programming �SLP�, Convex Linear-
ization �CONLIN� developed by Fleury and Braibant �21�,
Method of Moving Asymptotes �MMA� developed by Svanberg
�22�, and Diagonal Sequential Quadratic Programming �DSQP�
developed by Fleury �23�, were also introduced for large-scale
structural optimization problems. Ma and Kikuchi �18� developed
a generalized SAO �GSAO� method based on a general convex
approximation, which can produce a number of different optimi-
zation algorithms. Since the GSAO algorithm reduces in special
cases to the aforementioned SAO algorithms, including OC,
CONLIN, MMA, and DSQP, it can be considered as a generali-
zation of these algorithms. Note that while the work of Ma and
Kikuchi �18� provided a general formula for the GSAO method,
the current paper proposes a practical and executable algorithm
that is based on the general method but is specifically tailored to
the MDTO problems dealt with in this paper. Thus Ref. �18� fo-
cused on the foundation and general theory of the new method,
and the current paper centers on the selection and practical use of
a suitable algorithm.

The basic concept of the GSAO method is to approximate the
original optimization problem, Eq. �4�, as a sequence of simplified
problems. At each iteration, an approximate optimization problem
is solved by the dual method to obtain an approximation of the
optimum for the original problem. This approximate optimum is
then used as the starting point for the next iteration, and this
iterative process is continued until a specified criterion is satisfied.
The GSAO method approximates the optimization problem by
linearizing the objective and constraint functions via a general
intermediate variable, which can be written as

yi = �xi − ci��i �i = 1,2, . . . ,n�

and

zji = �xi − eji��ji �i = 1,2, . . . ,n and j = 1,2, . . . ,m� �5�

where yi �i=1,2 , . . . ,n� are used to linearize the objective func-
tion �f�X� in Eq. �4��, zji �i=1,2 , . . . ,n; j=1,2 , . . . ,m� are used to

linearize the constraint functions �hj�X� �j=1,2 , . . . ,m� in Eq.
�4��, and �i, � ji, ci, and eji are parameters that control the perfor-
mance of the optimization algorithm. Different selections for these
parameters will result in different updating rules for the GSAO
algorithm. Existing popular optimization algorithms, such as OC,
CONLIN, MMA, and DSQP, are special cases of the GSAO al-
gorithm obtained by selecting special sets of the parameters in Eq.
�5�; this will be discussed later in the paper.

Linearizing the objective function and constraint functions in
Eq. �4� via the intermediate variables defined in Eq. �5�, one ob-
tains a sequence of approximate optimization problems for the
original optimization problem, as follows:

Minimize f0
k + �

i=1

n

ai
k�xi − ci��i

Subject to h0j
k + �

i=1

n

bji
k �xi − eji��ji � 0 �j = 1,2, . . . ,m�

x� i � xi � x̄i �i = 1,2, . . . ,n� �6�

where k �k=1,2 , . . . � denotes the iteration number,

f0
k = f�Xk� − �

i=1

n

ai
k�xi

k − ci��i

h0j
k = hj�Xk� − �

i=1

n

bji
k �xi

k − eji��ji

ai
k =

1

�i
sign�xi

k − ci��xi
k − ci�1−�i f ,xi

k

bji
k =

1

� ji
sign�xi

k − eji��xi
k − eji�1−�jihj,xi

k �7�

where xi
k �i=1,2 , . . . ,n; k=1,2 , . . .� are the design variables ob-

tained at the previous, or �k−1�th iteration, �for k=1, xi
1 �i

=1,2 , . . . ,n� are the initial design variables�, and

f ,xi

k = 	 �f

�xi
	

X=Xk

and

hj,xi

k = 	 �hj

�xi
	

X=Xk
.

By properly choosing the parameters in Eq. �5�, the approxi-
mate optimization problem in Eq. �6� can be made to be always
convex. It is then solved by using the dual method, and the dual
problem can be written as

maximize
�

Lk�X*���,��

subject to � j � 0 �j = 1,2, . . . ,m� �8�

where, �= ��1 ,�2 , . . . ,�m�T denotes the vector of the dual vari-
ables �which are also known as the Lagrange multipliers�. Note
that the dual optimization problem in Eq. �8� feature only very
few �dual� design variables, whose number equals the number of
constraints �which here is equal to the number of subdomains
considered in the optimization problem, Eq. �4��. In Eq. �8�, one
has
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Lk�X*���,�� = f0
k + �

j=1

m

� jh0j
k + �

i=1

n 
ai
k�xi

* − ci��i

+ �
j=1

m

� jbji
k �xi

* − eji��ji� �9�

where X*���= �x1
*��� ,x2

*��� , . . . ,xn
*����T is a function of the dual

variables, and can be obtained by solving the following equations:

āi
k sgn�xi

* − ci��xi
* − ci��i−1 + �

j=1

m

� jb̄ji
k sgn�xi

* − eji��xi
* − eji��ji−1 = 0

�for x� i � xi
* � x̄i, where i = 1,2, . . . ,n� �10�

where āi
k=�iai

k and b̄ji
k =� jibji

k . Note that xi
*=x� i if xi

*�x� i, and
xi

*= x̄i if xi
*	 x̄i.

Equation �10� is referred to as an updating equation. An explicit
solution of Eq. �10� is called an updating rule, which in general
can be written as

xi
* = gi�xi

k� �i = 1,2, . . . ,n� �11�

where xi
* denotes the updated value of the design variable xi, and

gi is a function defined by the solution of Eq. �10�.
Assuming �* is the optimum solution of the dual problem, Eq.

�8�, X=X*��*� gives an approximate optimum solution for the
primary optimization problem, Eq. �4�, at the kth step. By iterat-
ing, this approximate optimum solution will converge to the exact
optimum of the primary optimization problem, provided the pa-
rameters in Eq. �5� are properly chosen. As mentioned previously,
different SAO algorithms can be obtained by employing different
intermediate variables in Eq. �5�. As a special case, an extended
CONLIN algorithm is obtained in this paper by assuming

�i =��i
+ if f ,xi

k � 0

�i
− if f ,xi

k 
 0, � ji = �i =��i
+ if hj,xi

k � 0

�i
− if hj,xi

k 
 0, and

eji = ci �j = 1,2, . . . ,m� �12�

where �i
−
1��i

+. Then Eq. �11� becomes

xi
* = ci + wi�xi

k − ci� �for x� i � xi
* � x̄i� �13�

where

wi = �
−
qi

−

f i
+ + qi

+��i

if f ,xi

k � 0


−
f i

− + qi
−

qi
+ ��i

if f ,xi

k 
 0� �14�

and

qi
+ = �

+

� jhj,xi
, qi

− = �
−

� jhj,xi
, f i

+ = f ,xi

k �f ,xi

k � 0� ,

f i
− = f ,xi

k �f ,xi

k 
 0�, and �i =
1

�i
+ − �i

− �15�

where �+ represents the summation over the terms that satisfies
hj,xi

k �0, and �− is the summation over the other terms. Note that
the CONLIN algorithm developed by Fleury and Braibant �21� is
a special case of Eq. �13� when ci=0, �i

+=1, and �i
−=−1.

If one assumes that f ,xi

k 
0 and hj,xi

k �0 are satisfied for the
design variable xi at the kth iteration step, then the updating rule in
Eq. �13� can be further reduced �for the design variable and the
iteration step� to

xi
* = ci + �−

f ,xi

k

�
j=1

m

� jhj,xi

k �
�i

�xi
k − ci� �16�

where

�i =
1

�i − �i
��i � 0 by definitions of �i and �i� �17�

Note that the OC algorithm used widely in topology optimization
�for example, in �6�� is a special case of Eq. �16� for ci=0 and
m=1 �m=1 indicates a single domain topology optimization prob-
lem�. Also note that parameter �i in Eq. �17� �as well as in Eq.
�14�� has the same meaning as in the standard OC algorithm, and
it can be adjusted to affect the smoothness of the iteration process
and the convergence speed. Further note that the conditions f ,xi

k


0 and hj,xi

k �0 can always be satisfied for topology optimization
problems with an objective to minimize the mean compliance.
Therefore, updating rule Eq. �16� can be used to solve such prob-
lems. In general, updating rule Eq. �14� can be used when such
conditions are not satisfied, which often happens when dealing
with, for example, objectives related to eigenvalue and dynamic
response. Updating rule Eq. �14� is generally recommended, since
it can always satisfy the convexity conditions defined in �16� and
it features a more robust convergence. Parameters ci�i
=1,2 , . . . ,n� in Eq. �13� can be set to ci=0, ci=xi

k−1, or other
values. In this paper, we simply suggest using ci=0 for all i. The
optimization algorithm proposed above has been extensively
tested for many different topology optimization problems, and it
has proven to be highly efficient and robust.

Additional updating rules can be obtained from the GSAO
method using the updating Eq. �10�. For instance, if one lets �i

=� ji=−1 and chooses ci and eji as ci=Li
xi �when f ,xi

k 
0�, ci

=Ui�xi �when f ,xi

k �0�, eji=Li �when hj,xi

k 
0�, and eji=Ui �when

hj,xi

k �0�, then the GSAO algorithm reduces to the MMA algo-
rithm �22�. If one lets �i=2 and uses the second-order diagonal
derivatives to determine ci, then the GSAO algorithm becomes the
DSQP algorithm �23�. Further discussion of this subject, however,
is beyond the scope of this paper.

Note that, in practice, the use of moving boundaries is an ef-
fective way to avoid potential oscillations in the iterative process
and to improve the convergence of the overall optimization pro-
cedure. The moving boundaries can be defined as

x� i
k = max��1 − ��xi

k,x� i� and x̄i
k = min��1 + ��xi

k, x̄i� �18�

where ��0
�
1� is a given parameter. Then the updating rule
can be modified as

xi
k+1 = �x� i

k if xi
* � x� i

k

xi
* if x� i

k 
 xi
* 
 x̄i

k

x̄i
k if xi

* 	 x̄i
k � �19�

where xi
k+1 denotes the updated design variable that is limited by

the moving boundaries, and xi
* is obtained from Eq. �11� �or its

special cases, Eqs. �13� or �16��.

Substructuring Technique for MDTO
Substructuring and condensation methods provide an effective

means of reducing significantly the size of structural models
across the frequency range, which in turn permits MDTO prob-
lems to be solved in a more efficient and effective way.

State equations for the topology optimization problem, Eq. �4�,
usually feature a very large number of variables �typically the
nodal displacements�. Even for a simple structure, a finely dis-
cretized finite element model can involve from thousands to mil-
lions of nodal variables. In topology optimization, such fine
meshes are usually required for obtaining smooth boundaries and
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interfaces. Substructuring methods provide an effective tool for
condensing the analysis variables into a much smaller set, thus
greatly reducing computer memory requirements and increase
computational efficiency. This approach is particularly natural and
useful for multidomain topology optimization problems, since it
not only improves the computational efficiency, but also extends
the applicability �in terms of problem solvability� of the method-
ology to a wider range of design problems, which will be detailed
in this paper. While substructuring can be used in several ways to
improve computational efficiency, including to condense out the
design domains, in this paper the condensed analysis variables are
those associated with the nondesign subdomains of the structure
�see Fig. 2�. The nodal displacement variables can be condensed
into those at the boundaries of the subdomain when a static analy-
sis is considered, and with an additional small number of gener-
alized modal coordinates when a dynamic problem is considered.
Note that the design and nondesign subdomains can be switched if
necessary during the different design stages.

In the case of a static condensation, assuming that ua denotes
the vector of nodal displacements associated with the active nodes
�usually the boundary nodes� of a nondesign subdomain, and uo
denotes the vector of the nodal displacements associated with the
other nodes �usually the internal nodes� of the same subdomain,
the state equation for the subdomain can be written as

�koo koa

kao kaa
��uo

ua
 = �fo

fa
 �20�

where kij�i , j=o ,a� are the blocks of the stiffness matrix of the
subdomain associated with uo and ua, respectively, and fo and fa
are the corresponding nodal force vectors. Then Eq. �20� can be
condensed into an equation that involves only ua, namely,

�kaa
* ��ua� = �fa

*� �21�

where kaa
* =kaa−kaokoo

−1koa and fa
*= fa−kaokoo

−1fo.
Note that the coordinate transformation for the condensation is

�uo

ua
 = �C��ua� �22�

where the transformation matrix is

C = �Coa

Coo
� = �− koo

−1koa

I
� �23�

Each column of C is called a “static mode” or a “constraint
mode.” Note that in practice, the static modes are calculated with
a more efficient computational procedure without computing the
inverse of koo in Eq. �23�.

In the case of a dynamic condensation, assuming that the state
equation is written as

�moo moa

mao maa
��üo

üa
 + �koo koa

kao kaa
��uo

ua
 = �fo

fa
 �24�

where mij�i , j=o ,a� denote the blocks of the mass matrix, then
the transformation equation, Eq. �22�, is extended as

�uo

ua
 = �D��qn

ua
 �25�

where qn is a vector of so-called generalized modal coordinates.
The transformation matrix D for the dynamic problem can then be
obtained as

D = ��on + �oa�an �oa

0 I
� �26�

where �=� �an

�on
� is the normal modes matrix, which is calculated

by solving a free vibration eigenvalue problem associated with the

subdomain. The matrix �=� �oa

�oo
� contains the so-called “quasi-

static modes” �QSM� �19,24,25�, which can be calculated by solv-

ing the quasistatic �frequency response� problem associated with
Eq. �24�. Theoretically, � can be written as

� = �− �koo − c
2moo�−1�koa − c

2moa�
I

� �27�

where c is the “central frequency,” which is determined by the
frequency range of interest �19�. Note that the size of qn in Eq.
�25� is usually far smaller than uo, therefore, the coordinate trans-
formation Eq. �25� �as well as Eq. �22�� significantly reduces the
size of the analysis problem. For a static analysis, Eq. �22� does
not induce any error into the original analysis problem. But for a
dynamic analysis problem, Eq. �25� is an approximation, and the
error can be controlled by properly choosing the central frequency
and/or considering additional modal coordinates in Eq. �25�. Note
that for c=0, the QSM defined in Eq. �27� reduce to the tradi-
tional static (constraint) modes proposed by Hurty �26� and Craig
and Bampton �27�, which are given in Eq. �23�. Compared with
the static modes, the QSM can significantly reduce both the size
of the analysis problem and the error induced by the coordinate
reduction process, particularly within the frequency range of in-
terest. This is because not only the higher-frequency modes are
truncated, but also the lower-frequency modes outside the fre-
quency range of interest. Therefore, the QSM can handle dynamic
response problems within higher frequency ranges, and they in-
clude the traditional static modes as a special case. Note that the
central frequency is typically selected at the middle of the fre-
quency domain of interest, and that multiple central frequencies
can also be used �25�.

Example Applications

Structure-Fixture Simultaneous Design Problem. This first
example illustrates how the multidomain topology optimization
technique can be applied to a “structure-fixture simultaneous de-
sign” problem. �The reader can find different treatments in �30,31�
for similar design problems.� Figure 3 depicts a structure whose
optimal topology is sought in a “structure domain,” and which
features a solid bar at the bottom of the domain �referred to as a
nondesign domain�. The structure needs to support three lumped
masses distributed in the structure domain, as shown in Fig. 3.
Meanwhile, a fixture design is sought in the “fixture domain,”
whose purpose is to attach the structure onto, for example, a fixed
workplace. The fixture domain reflects the allowable space where
the fixture can be placed between the structure and the workplace.
In this example, the objective is to maximize the fundamental
eigenfrequency of the structure-fixture system so as to limit its
vibration response under certain operating conditions.

It is assumed that the total �normalized� amount of the material
is 14, which represents a 35% material density over the whole
design domain. Figure 4 depicts an optimal design obtained from
the MDTO process when the material is evenly assigned to the
structure and the fixture �namely 7:7�. In this case, the optimized

Fig. 3 A structure-fixture simultaneous design problem
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eigenfrequency of the coupled system is 4.37 �also on a normal-
ized scale�. Figure 5 shows another design obtained when a larger
amount of the material is assigned to the structure domain and less
material is assigned to the fixture domain �namely, 11 for the
structure domain and 3 for the fixture domain�. The optimized
fundamental eigenfrequency becomes 5.01 in this case. Note that
different materials could be assigned to the structure and to the
fixture, and the use of multiple materials may allow the designer
to make an even better design.

The results shown in Figs. 4 and 5 emonstrate a notable advan-
tage of using the structure-fixture simultaneous design process.
There is a smooth transition of the material between the structure
and fixture subdomains, which would be difficult to achieve if the
structure and fixture were designed separately. More detailed at-
tachment conditions, for example, using bolts or welds, and other
design objectives, for example, strength and stability, could be
considered in the design process, but these are not discussed here.

Functionally Gradient Material Design Problem. The second
example illustrates how the MDTO technique can be applied to a
design problem for a so-called “functionally gradient material”
�FGM� �28�. Here the “material” is interpreted as an “engineered
material” or a “composite material” �29�. The objective of this
example is to design a structure that can support a top layer of a
material made of stiff tiles, as depicted in Fig. 6. The structure
also needs to feature a gradually-reduced stiffness in order to
match a soft material �skin� at the bottom. The top layer �tiles� and
the skin layer are considered as nondesign domains, while the four
supporting layers are optimized for their global stiffness subject to
the graded material densities. The material density for each sup-
porting layer is determined from the consideration of gradually
reducing the stiffness of the structure. In this example, the mate-
rial densities for the four layers are selected to be 45, 36, 27, and
18% from the top layer to the bottom layer, respectively �see Fig.
6�. Figure 7�a� shows the optimum layout obtained from a multi-
domain topology optimization process. It is seen that the material

density can be distributed �in this example along the vertical axis�
in the desired way, and that a smooth stiffness transition can be
obtained, thus allowing for the attachment of a very stiff material
to a much softer material. Figure 7�b� further shows a polished
design based on the optimum layout of Fig. 7�a� and obtained
through postprocessing. Note that the objective function used in
this optimization problem is to maximize the rigidity of the struc-
ture for the static loads shown in Fig. 6. Manufacturing constraints
can also be considered in the design process so that the material
pattern in Figs. 7�a� or 7�b� can be optimized to satisfy the fabri-
cation requirements.

Crush Energy Management Design Problem. This example
illustrates the application of the MDTO technique to a “crush
energy management” problem. Figure 8 depicts a sandwich beam
under an axial load, which represents a major crush load, and
under a bending load, which represents the load that the structure
normally carries. Subdomains 2 and 4 are defined as the design
areas for crush energy absorption, and they are the regions where
buckling is desired during a crush event. Subdomains 1 and 3 are
the regions where buckling is not allowed to happen during the
crush event. The overall structure also needs to have a maximum
stiffness for the given amount of material, so it can resist both the
compressive and bending loads shown in Fig. 8. In order to obtain
such a structure, the MDTO process is employed, in which less
material is assigned to the subdomains 2 and 4, but more material
is assigned to the subdomains 1 and 3, while the global stiffness of
the structure is optimized with respect to the given loads.

Figure 9 shows the resulting optimized structure obtained by
assigning a 52% material density to subdomains 1 and 3 and a
26% material density to subdomains 2 and 4. As more material
has been distributed into subdomains 1 and 3, the structure is
much stronger in these regions, while it is weaker in subdomains
2 and 4. Figure 9 also shows that a smooth material transition is
obtained between the stronger areas and the weaker areas, which
results in an optimum distribution for the global stiffness of the

Fig. 4 Design 1 „7:7…: optimized eigenfrequency=4.37

Fig. 5 Design 2 „11:3…: optimized eigenfrequency=5.01

Fig. 6 Example FGM with a top layer made of stiff tiles, four
supporting layers with graded densities, and a soft skin. The
graded densities for the four supporting layers are, from the
top layer to the bottom layer, 45%, 36%, 27%, and 18%,
respectively.

Fig. 7 Optimal design for the FGM example: „a… optimum lay-
out; „b… finalized design

Fig. 8 Design problem for crush energy management
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structure.
In order to verify the optimized design in terms of its crush

energy management capability, a virtual prototype has been devel-
oped using LS-Dyna3D. Figure 10 shows snapshots from a time
simulation in which the virtual prototype beam is crashed into a
rigid wall at 13 m/s �48 km/h�. As observed in Fig. 10�a�, the
first buckling occurs in Design Domain 4 �refer to Fig. 8�, which
was designed for energy absorption. Figure 10�b� shows that the
second buckling occurs in Design Domain 2, which was also de-
signed for absorbing energy. Figure 10�c� shows that the structure
is completely crushed at the end of the crash process, with all the
holes in the energy-absorbing areas being closed, while Design
Domains 1 and 3 remain almost uncrushed as designed. Figure 11
illustrates the virtual crash test of a nominal beam design, where a
homogeneous beam without open holes is crashed onto the same
rigid wall at the same speed. Figure 12 further compares the crash
forces obtained from the virtual crash tests of the optimum and the
nominal beam designs, where the crash force is measured at the
tip of the beam. As shown in Fig. 12, an almost-constant crash
force is obtained for the optimum design, with an amplitude of
less than one-third of that of the maximum crash force for the
nominal design. This example demonstrates the effectiveness of
the new methodology and the design process developed. These
have significant potential applicability to the optimization of
ground vehicles for crush energy management.

Note that, in this optimization problem, 72 iterations were re-
quired to satisfy the convergence criteria of �fk+1− fk� / �fk��1.0e
−4 when the original CONLIN algorithm �namely using �i

+=1,
and �i

−=−1 in Eq. �13�� was used. The number of iterations was
reduced by about half, to 35, for the same criteria when the ex-
tended CONLIN algorithm was used with the parameters �i

+=1,
and �i

−=−0.2. Thus the new optimization algorithm proposed in
this paper not only provides useful flexibility to deal with various
topology optimization problems, but also features significantly
greater convergence. Further discussion regarding how to deter-
mine the optimum parameters in the optimization algorithm will
be discussed in a future paper.

Also note that the beam model considered was discretized with
a 92�20 mesh, yielding 1840 finite elements and 1953 nodes,
which include 1072 elements and 1288 nodes associated with the
nondesign domains. By using the substructuring technique intro-
duced in this paper, the 903 internal nodes in the nondesign do-
mains were reduced, which resulted in an analysis problem of
smaller size without loosing any fidelity. The savings on CPU
time and memory requirement, however, will become meaningful
only for larger and more complex structural systems.

Conclusions
The multidomain topology optimization technique introduced

in this paper extends the standard topology optimization method
to the realm of more realistic engineering design problems, in-
cluding �1� the simultaneous design of multiple, coupled compo-
nents, �2� the design of functionally graded and other composite
materials, �3� the design of multifunctional structures, and �4� the

design for crush energy management and other impact-related
problems. The MDTO process developed allows the designer to
distribute materials in a desired way as well as define different
objectives and constraints among the different subdomains, en-

Fig. 9 Optimized design for the crush energy management
problem; „a… optimum layout; „b… finalized design

Fig. 10 Virtual crash test of the prototype: deformed structure
is shown at „a… t=0.01 s, „b… t=0.02 s, „c… t=0.04 s. „a… Snapshot
1: first buckling occurs in Design Domain 4 „t=0.01 s…. „b…
Snapshot 2: second buckling occurs in Design Domain 2
„t=0.02 s…. „c… Snapshot 3: third buckling occurs in Design Do-
main 3 „t=0.04 s…
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ables the use of multiple materials, and helps address issues such
as multifunctionality, for example, by treating multidisciplinary
physical processes in the different subdomains.

A new algorithm of Sequential Approximate Optimization has
been proposed for multidomain topology optimization, which is
an enhancement and generalization of previous SAO algorithms
�including OC, CONLIN, MMA, and DSQP�. An advanced sub-
structuring method using quasi-static modes has also been intro-
duced to condense the nodal variables associated with the multi-
domain topology optimization problem, especially for the
nondesign subdomains. Several important applications have been
presented to demonstrate the effectiveness of MDTO and its po-
tential for a wide range of engineering design problems.
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Nomenclature
a�ae� � design variable of the microstructure �with

respect to element e�
b�be� � design variable of the microstructure �with

respect to element e�
ai

k ,bji
k � coefficients defined in Eq. �7�

āi
k�b̄ji

k � � �iai
k�� jibji

k �

C � transformation matrix in Eq. �22� �also global
damping matrix in Eq. �2��

ci � controlling parameter in Eq. �5� for the ob-
jective function

D � transformation matrix in Eq. �25�
DH � homogenized elasticity matrix
eji � controlling parameter in Eq. �5� for constraint

functions
f � objective function

f ,xi

k
� � f /�xi�X=Xk

f0
k � coefficients defined in Eq. �7�

f�fo , fa� � nodal force vector �components associated
with uo and ua�

fa
* � condensed nodal force vector in Eq. �21�

hj � jth constraint function
hj,xi

k
� �hj

/�xi�X=Xk

h0j
k � coefficients defined in Eq. �7�

ke ,K � stiffness matrix �element/global�
kij�i , j=o ,a� � blocks of the stiffness matrix

kaa
* � condensed stiffness matrix in Eq. �21�
Lk � Langrangian function in the kth iteration step
m � total number of subdomains

me ,M � mass matrix �element/global�
mij�i , j=o ,a� � blocks of the mass matrix

nel � total number of finite elements
n � total number of design variables

qn � generalized modal coordinate vector
u�uo ,ua� � nodal displacement vector �components asso-

ciated with internal and interface nodes�
X�Xk� � design variable vector �in the kth iteration�
xi�xi

k� � ith design variable �in the kth iteration�
X*�xi

*� � updated design variable vector �updated ith
design variable�

x� i � lower limit of the design variable xi
x̄i � upper limit of the design variable xi

x� i
k � moving lower limit of the design variable xi

at the kth iteration step
x̄i

k � moving upper limit of the design variable xi
at the kth iteration step

yi � intermediate variable defined in Eq. �5� for
objective function

zji � intermediate variable defined in Eq. �5� for
constraint functions

��� j� � Lagrange multiplier vector �jth component�
corresponding to the volume constraints

�i � controlling power parameter in Eq. �5� for
the objective function

� ji � controlling power parameter in Eq. �5� for
the constraint functions

�i � parameters defined in Eq. �15� or Eq. �17�
���e� � orientation angle of microstructure �with re-

spect to element e�
�H � homogenized mass density
� � normal mode matrix
� � quasistatic mode matrix defined in Eq. �27�
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Elastic Bending of Steel-Polymer-
Steel „SPS… Laminates to a
Constant Curvature
The shear strain of the interlayer in the elastic regime for a Steel-Polymer-Steel (SPS)
laminate material has been studied during bending to a constant curvature. An analytical
model is developed and the influence of process parameters are analyzed. The tension in
the cover sheets is also determined and, finally, a moment diagram is calculated. The
results show that the moment in the SPS laminate is nonuniform along the bent strip even
though the curvature is constant because of the tension and compression forces intro-
duced in the cover sheets by the shear reaction force of the interlayer material.
�DOI: 10.1115/1.2164512�

1 Introduction
In recent years, automobile manufacturers have developed

Steel-Polymer-Steel �SPS� laminates for automobile parts such as
fenders, doors and interior panels. Compared with homogeneous
metal sheets, SPS laminates offer a significantly lower density �1�
and better sound and vibration damping characteristics �2�. Com-
pared to other lightweight solutions they also have the advantage
of a good surface finish and can maintain a bending rigidity which
is almost equal to that of a simple metal sheet of the same total
thickness �3�. Thus, SPS laminates can have similar bending stiff-
ness to homogeneous steels, but at lower weight.

Despite the superior mechanical properties of SPS laminates,
they have not gained widespread use in the automobile industry
because of geometric distortion and defects arising from the form-
ing process. Several geometrical defects are observed which do
not occur with homogeneous material, especially in bending. Here
the two major concerns are unpredictable springback behaviour
and the “gull-wing” bend, both being the result of large shear
deformations in the interlayer, as the core material is weak com-
pared with the metal cover sheets �4–6�.

To ensure a safe and widespread usage of SPS laminates, it will
be necessary to develop analytical models to predict their forming
behavior in bending and determine ways to decrease geometrical
defects like springback and the gull-wing bend.

Many authors have proposed first and high order shear theories
to predict the behaviour of thick laminated composite plates �7–9�,
but all these investigations mainly focused on the elastic analysis
of static or vibratory bending. Only a few investigations dealt with
the elastic-plastic bending condition relevant to the press form-
ability of thin sandwich plates with a soft core, or SPS laminates.
Yoshida �10� analyzed the V-bending process of SPS laminates
taking into account the transverse shear of the polymer core. Here
the Kirchhoff-Love hypothesis for the deformation of the face
layers was used. For the deformation of the core it was assumed
that the transverse section, originally normal to the midsurface

remains plane, but not normal to the midsurface during bending.
The analytical model showed that the shear deformation in the
core of SPS laminates and in that way the gull-wing bend can be
decreased by using nonsymmetrical sandwich plates. Takiguchi
and Yoshida �11� investigated the mechanism of shear deforma-
tion of the adhesive layer during bending to generate an idealized
model of rate independent plasticity based on the Kirchhoff-Love
hypothesis for the cover sheets and the shear flexible theory of
Mindlin for the deformation of the adhesive material. They
showed that the gull-wing defect of SPS laminates in the
V-bending process can be decreased by using longer die-spans. In
a second approach Takiguchi and Yoshida included a constitutive
model of viscoplasticity for the adhesive layer showing that the
gull wing bend can be restricted by forming under higher speed
�12�. Li Liu and Jyhwen Wang �13� proposed an analytical solu-
tion based on the Euler-Bernoulli straight -and curved beam de-
flections to predict springback and side wall curl for SPS lami-
nates in wiper die bending.

The present work presents a simple analytical solution for free
bending of SPS laminates for the elastic case. In the first part an
approximate analytical model for the elastic case is developed that
includes the shear modulus of the core material and the transfer of
shear stress to the cover sheets. Based on the developed model the
tension acting on the cover sheets as a result of the transfer of
shear stress is determined. The final part of this paper calculates
the bending moment on the laminate sheet for a constant radius of
curvature.

The shear strain evolution in the interlayer over the sheet length
is calculated and the influence of process parameters, such as bend
radius and shear modulus of the interlayer material, is determined.

2 Material Description
A SPS material is shown schematically in Fig. 1. The cover

sheet is of cold rolled low carbon steel and the thickness of this
material ranges from 0.2 mm to 0.3 mm. The polymer core can
consist of several types of plastic; the authors have experience
with using PolyVinyl Chloride �PVC� and PolyPropylene �PP�
sheets. The thickness of the polymer core, or interlayer, ranges
from 0.3 mm to 0.9 mm. A thermoplastic adhesive film, with a
thickness of 0.05 mm, has been used to bond the interlayer to the
cover sheets. The presence of this adhesive film is neglected in the
present work.
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3 An Approximate Analytical Model for Pure Elastic
Bending

This section develops the model for the strain and stress distri-
bution along the length of a strip of continuous sheet bent in plane
strain to the arc of a circle by a pure moment without any super-
imposed tension. In this model, the shear modulus of the core
material is finite and the transfer of shear stress to the cover sheets
is examined. Linear elastic behavior is assumed.

An idealized model of deformation of each layer for a bonded
sheet is illustrated in Fig. 2. While the cover sheets deform in pure
bending the interlayer material deforms in pure shear. We consider
an initial element of length ds which after bending is as shown in
Fig. 2. It is assumed that the midsurface of the core does not
elongate, hence ds=�d�. The cover sheets may change in length
and subtend an angle d� as shown where d��d�.

Figure 3 shows an element of the core bent to a midsurface
radius �. As any influence of the inner and outer cover sheets are
likely to be balanced, it is reasonable to assume that the length at
the midsurface of the polymer core will not change and the initial
and final length of the midsurface can be specified as �d�. The arc
length between the upper corners of the polymer core, length AB,
is therefore

AB = �� + b�d� − bd� �1�
If the shear modulus of the core is greater than zero, a shear stress
must exist at the interfaces between the core and cover sheets. To
satisfy equilibrium, tension will build up in the outer cover sheet
and compression in the inner. This results in elongation of the
outer cover sheet and compression of the inner cover sheet. In Fig.
4 the strain distribution of an element of the outer cover sheet is

shown. For �� t, the strain distribution in the cover sheet can be
calculated as,

�1 = �a + �b = �a +
y

�� + a + b�
� �a +

y

�
, �2�

where �a is the strain at the mid-surface. For the linear elastic
case, the stress distribution is given by �1=�a+E�y /�, where
�a=E��a.

The tension on the cover sheet is given by �a=T /2a, and dur-
ing elastic deformation, the strain of the midsurface is �a
= �T /2a� · �1/E��.

The length of the midsurface of the cover sheet is therefore
approximately,

�d��1 +
T

2a
·

1

E�
� = �� + a + b�d� . �3�

The length of the interface AB can then be calculated as,

AB = �� + b�d� =
��� + b�

�� + a + b��1 +
T

2a
·

1

E�
�d� . �4�

From Eqs. �1� and �4�, the rate of change of shear strain is, after
simplification:

d�

d�
=

1

b
��a + b� −

�

2a
·

T

E�
� , �5�

where it is assumed ��a or b, �+a+b��, and �+b��.

Fig. 1 Section of Steel Polymer Steel „SPS… material. The
thickness of the SPS sheet is t, while the thickness of the cover
sheets is 2a, and the thickness of the interlayer is 2b. The ra-
dius of curvature is �.

Fig. 2 An element of the laminate material bent at a constant
radius of curvature

Fig. 3 Interlayer polymer under shear from the two cover
sheets. Midsurface length is �d�, and the shear strain is �,
while the change in shear strain is d�.

Fig. 4 Strain distribution in the cover sheet
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In Eq. �4�, as indicated, the tension varies with the angle � and
this relationship must be determined. Figure 5 shows a schematic
illustration of the shear stress acting at the interface AB due to the
shear deformation of the interlayer and the resulting tension in the
outer cover sheet. According to Fig. 5 the force equilibrium within
the cover sheets is:

− T + T + dT +
�2	 + d	�

2
AB = 0, �6�

where �2	+d	� /2�	 is the average value of shear stress applied
to the cover sheet surface. It is assumed that the change of the
shear stress, d	, is very small when the subtended angle, d�, is
very small. The shear stress 	 applied by the interlayer material is
equal to �G. Using Eqs. �1� and �6�, the rate of change of the
tension is

dT

d�
= − �G��� + b� −

d�

d�
b� . �7�

Note that the change of the tension, dT, is negative as the shear
angle is positive. It can be assumed that the change in shear strain
term in Eq. �7� is much smaller than the bend radius term,
d� /d�b
 ��+b���. Therefore Eq. �7� can be simplified to:

dT

d�
= − �G� . �8�

A sensitivity analysis has shown that the error resulting from this
simplification is less than 1% for typical material and processing
values. Differentiating Eq. �5� with respect to �, and substituting
for dT /d� using Eq. �8� gives:

d2�

d�2 − K� = 0 �9�

where

K =
�2

b
·

G

2aE�

This is an ordinary differential equation that can be solved in
the following form:

� = C1 exp��K�� + C2 exp�− �K�� . �10�

The rate of change of shear strain can then be obtained as follows:

d�

d�
= �KC1 exp��K�� − �KC2 exp�− �K�� �11�

For pure bending the situation is illustrated schematically in Fig.
6. It is assumed that the sheet is bent to a circular arc in a fric-
tionless die. The boundary conditions for this system are, by sym-
metry, �=0, when �=0, and T=0, when �=�.

The constants can then be determined using Eqs. �5�, �10�, and
�11�, and the boundary conditions to give

C2 = − C1 �12�

C1 =
�a + b�

b
��K	exp��K�� + exp�− �K��
�−1 �13�

4 Bending Moment and Tension in the Strip

4.1 Calculation of Tension Over the Cover Sheet. The ten-
sion, T, acting on the cover sheet is calculated by rearranging Eq.
�5�; d� /d� can be determined from the linear approximation given
in Eq. �11�. This results in the following relationship:

T��,�� =
2aE�

�
��a + b� − b

d�

d�
� . �14�

4.2 Bending Moment of the Laminate Material. Assuming
that the bending moment on the interlayer is small relative to the
cover sheets and can be neglected, the bending moment on the
laminate is composed of the moment to bend each cover sheet
plus the moment due to the tensions on each cover sheet. Figure 7

Fig. 5 Force equilibrium diagram of both the cover sheet and
the interlayer

Fig. 6 Bending of the SPS laminate material to a constant
radius of � for a frictionless clamped die

Fig. 7 Moments of the upper and lower cover sheets and the
overall moment on an element section of the SPS laminate
material
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shows the bending moment of the laminate, where Mupper and
Mlower are the bending moments of the cover sheets and the total
bending moment is given by

Mtotal = Mupper + Mlower + 2�a + b�T��,�� �15�
The moments in the cover sheets about the midsurface of each
sheet, which is also the line of action of the force T, is determined
from the equilibrium equation,

Mcover =�
−a

a

�iydy �16�

which leads to

Mupper = 2
E�

�� + a + b�
·�

0

a

y2dy �17�

and

Mlower = 2
E�

�� − a − b�
·�

0

a

y2dy �18�

Assuming that �� �a+b� and ��+a+b����−a−b���, then the
moment in each cover sheet is approximately

Mupper/lower =
2E�a3

3�
, �19�

and the overall moment is given by

Mtotal = 2Mupper/lower + 2�a + b�T��,�� or

Mtotal = 2�2E�a3

3�
 + 2�a + b�T��,�� �20�

5 An Example
The model is used to analyze the influence of the important

process parameters of the bending process on the shear deforma-
tion of the interlayer material and in that way the shear stress at
the interface interlayer/cover sheet. An arbitrary elastic bend was
chosen as a base as shown in Table 1.

5.1 Shear Deformation. The shear angle of the interlayer
over the sheet length for varying conditions indicated in Table 1
has been calculated using Eq. �10� and is shown in Fig. 8 for the
change of bend radius and shear modulus. The shear deformation
of the interlayer is very small towards the center of the bend and
increases rapidly towards the ends of the SPS sheet. The reason
for this rapid increase in angle is the decreasing tension in the top
cover sheet or decreasing compression in the bottom cover sheet;
the tension/compression in the cover sheets minimizes the shear
deformation in the interlayer by reducing the in-plane distance
between corresponding cover sheet points; for example, points A
and C or points B and D in Fig. 3. The rate of change of the
tension/compression in the cover sheets is primarily dependent on
the shear modulus of the interlayer. A higher shear modulus of the

interlayer material causes a decrease in the shear deformation be-
cause of increased shear stresses at the interface interlayer/cover
sheet. This causes the cover sheets to deform in tension �compres-
sion� while the interlayer deforms less �Fig. 8�. If the shear modu-
lus of the interlayer is zero, then the shear angle is a linear func-
tion of the length along the strip from the center line. For this
case, the interlayer is unable to create any shear stress on the
steel-polymer interface to reduce the increase in shear deforma-
tion. A smaller bend radius results in an increased shear angle and
with decreasing interlayer thickness the shear deformation de-
creases. Thicker cover sheets lead to higher shear deformation in
the interlayer because the shear stresses necessary to deform the
cover sheets are higher, which leads to more deformation of the
interlayer.

5.2 Tension. Based on the above model the tension force act-
ing in the cover sheet as a result of the introduced shear stresses at
the interlayer/cover sheet interface was determined to provide a
moment diagram for the sheet. The tension in the cover sheet as a
function of the sheet length is shown in Fig. 9. It is calculated
from Eq. �14� using the base values shown in Table 1. To illustrate
the influence of the shear deformation of the interlayer material on

Table 1 Material and process conditions used in the analysis

Variable Base Value Range

Bend radius, �, mm 500 300–700
Interlayer shear modulus, G, MPa 300 180–420
Interlayer thickness, 2b, mm 0.6 0.4–0.8
Cover sheet thickness, 2a, mm 0.22 0.12–0.32

Fixed Values

Cover Sheet Young’s modulus, E�, GPa 200
Strip length, mm 150

Fig. 8 Plots of the shear strain within the interlayer using the
conditions specified in Table 1 for various bend radius and
shear modulus
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tension in the cover sheets, the two major parameters influencing
the shear deformation of the interlayer, bend radius and the shear
modulus, were varied in the tension calculation. It can be seen that
the tension force acting in the cover sheets has a maximum at
�=0 and decreases to zero at the end of the SPS sheet. Therefore,
as the tension along the sheet decreases, the shear deformation in
the interlayer increases. The tension stretches the upper sheet and
shrinks the lower cover sheet to decrease the difference between
the corresponding points on the two cover sheets. This reduces the
shear deformation where the tension is high, and increases the
shear strain where the tension is low. Decreasing bend radius in-
creases tension in the cover sheets. Compared to the change in
shear deformation in the interlayer material �Fig. 8�, the effect of
bend radius on the tension is more significant. Here basically an
increase in the maximum tension value can be seen. In contrast, as
the shear modulus of the interlayer material decreases, the tension
in the cover sheets decreased because of the lower shear stresses
generated at the interface interlayer/cover sheet.

5.3 Bending Moment. To validate the assumption of a zero
bending moment in the core material �Sec. 4.2� the material and
process conditions of Table 1 have been used to determine the
bending moment of the cover sheets and the core in the absence of

any tension. The calculation results show that the moment resis-
tance of the interlayer only accounts for approximately 4% of the
moment required to bend the two cover sheets and can be there-
fore neglected in the calculation of the bending moment of the
laminated strip. The calculated bending moment of the laminated
strip as a function of the sheet length using Eq. �20� is shown in
Fig. 10.

It can be seen that the bending moment has a maximum at the
middle of the bend and it decreases towards to the end of the
sheet. Notice that the bending moment reaches a constant value
not equal to zero at the end of the strip, which equals the sum of
the pure bending moment for both cover sheets. The change in
bending moment over the sheet length is a result of the tension
force acting on the cover sheets. The tension decreases to zero to
the end of the sheet leaving only the pure moment to curve the
cover sheets on the sheet end. This shows that in contrast to ho-
mogeneous sheet, for laminated sheet a bend to a constant radius
of curvature does not result in a constant moment but a moment
that changes along the sheet length. This result suggests that a
pure moment applied on a SPS sheet would not lead to a perfect
but an irregular circle of arc, which could lead to differences in
shape after forming compared to homogeneous sheet material.

Fig. 9 Tension in the top cover sheet when varying the bend
radius and shear modulus

Fig. 10 The moment diagram of the laminate SPS material
bent to a circular arc for different values of the bend radius and
the shear modulus
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6 Conclusion
The use of laminated sheet is likely to increase in auto body

construction and satisfactory design tools will be required. This
paper only takes a very limited case of elastic bending to constant
curvature, but it is hoped that the basic formulation is capable of
further development. Within this limited scope it has been found
that in SPS laminated sheet, the bending moment is not constant
over the sheet length but decreases from a maximum in the center
of the bend to a constant value towards the edge of the sheet. This
change in bending moment is a result of the shear deformation of
the interlayer material introducing shear stresses at the interface of
the cover sheet and the interlayer. This causes tension forces in the
cover sheets and results in an additional and nonuniform bending
moment term. The key variables affecting the shear strain and
resulting nonuniform moment appear to be the shear modulus of
the interlayer or the core thickness. The results from our model
also suggest that a constant moment applied on an SPS sheet
would lead to a nonuniform curvature in contrast to that of a
homogeneous sheet.

Although the equations developed are yet to be verified by ex-
periments, the results could be useful for a better understanding of
the forming behavior of SPS laminates in the bending process.
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Nomenclature
E� � plane strain elastic modulus of the cover sheet �MPa�
G � shear modulus of the polymer core �MPa�
T � tension in the cover sheet �N/mm�
a � half the thickness of the cover sheet �mm�
b � half the thickness of the polymer core �mm�

ds � length of an element at the midsurface �mm�
� � midsurface radius of curvature of the bend �mm�
� � final bend angle �radians�
� � angle subtended by part of the strip �radians�

d� � angle subtended by an element across the midsurface
of the polymer core

� � shear strain of the polymer core �radians�, it is a func-
tion of bend angle

d� � change in shear strain along an the element
d� � angle subtended by an element across the cover sheet

	 � shear stress between the cover sheet and the polymer
core �MPa�

�a � stress at the midsurface on an element of the cover
sheet �MPa�

�a � strain at the midsurface on an element of the cover
sheet

�b � bending strain on the cover sheet
�1 � stress on an element along the sheet direction �MPa�
�1 � strain on an element along the sheet direction
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Stability and Andronov-Hopf
Bifurcation of Steady-State
Motion of Rotor System Partly
Filled With Liquid: Continuous
and Discrete Models
In this paper, a new method for investigation of dynamics of fluid-filled rotor systems is
presented. The method consists of development of finite degrees-of-freedom (discrete)
models for the rotor systems. The discrete models are physically justified and demonstra-
tive. Being described by the system of ordinary differential equations, they allow one to
employ powerful tools of the theoretical mechanics and oscillation theory. The method is
applied to the case of the plane model of the rotor system partly filled with incompressible
liquid. Both the continuous and discrete models are considered. The main attention is
paid to the latter model. The discrete model consists of a disk symmetrically fixed on the
shaft (Laval scheme), the ends of which are in viscoelastic bearings, and a ring sliding
over the disk with friction. The centers of the disk and ring are elastically connected. The
disk models the rotor, while the ring describes the liquid filling. When the ring is sliding
over the disk surface, an interaction force arises that is diverted from the direction of the
relative velocity at the contact points. It is demonstrated that an appropriate choice of the
parameters of the discrete model allows one to determine the stability domain of the
steady-state rotation of the rotor in the plane of the parameters of the shaft bearings with
an excellent accuracy. It is found out that when the parameters overstep the limits of the
stability domain, the Andronov-Hopf bifurcation occurs: a periodic motion of a kind of a
circular precession arises from the steady-state rotation regime either “softly” or
“hardly.” �DOI: 10.1115/1.2164514�

Introduction
Nonconservative problems of dynamics of rotor systems partly

or completely filled with a stratified viscous fluid belong to classic
problems of mechanics. This class of problems was drawing at-
tention of researchers for more than a century and a half being a
fundamental issue in many practical applications, amongst which
one can call rotors, turbines, gyroscopic devices, ultracentrifuges,
flying apparatuses, and other transport means containing cavities
with fluid �fuel or liquid freight�.

In the 1950–1960s, the problems of the dynamics of hollow
solids containing liquid received a significant theoretical and ex-
perimental treatments by a great number of authors. The basic
reason for the developing was a rapid introduction of the space
rocketry and new generation of flying apparatuses. Moiseev and
Rumyantsev �1� and Mikishev and Rabinovich �2� published the
overviews devoted to dynamics of solids containing cavities with
fluid.

The instability of a rotor partially filled with fluid was first
observed by Epishev �3�, Crandall �4�, and Kollmann �5�. These
authors discovered experimentally that the rise of the instability of
the steady-state rotation leads to a circular precession at a fre-
quency close to the rotor whirl frequency.

Attempts to describe this fact by means of two-dimensional

�2D� models for rotors were made by Ehrich �6� and Wolf Jr. �7�.
Ehrich included viscosity of the fluid but assumed a restricted
form for the fluid motion. Wolf Jr. used a plane model of a pre-
cessing rotor partly filled with ideal incompressible liquid. He
found out that the instability is directly related to appearing of a
perturbed motion in the form of circular precession. However, the
frequency of the circular precession turned out quite different
from that of the rotational velocity.

Daich and Bar �8� and Saito and Someya �9� extended the
model of Wolf Jr. by accounting for the viscosity of the fluid. The
former authors, having used the method of the boundary layer,
showed that the introduction of the viscosity changes the results of
Wolf Jr. insignificantly, at least where the method of the boundary
layer is applicable. The latter authors came up to the analogous
conclusion. They used an exact solution to the plane problem of
the motion of a viscous incompressible liquid in a precessing re-
volving rotor. But they applied a conservative criterion of stability
to the nonconservative problem. It was assumed that the rise of
the instability is related to the appearing of a multiple imaginary
root of the characteristic equation.

In 1982, Lichtenberg �10� extended the model of Wolf Jr. for
the three-dimensional case. But he also could not obtain coinci-
dence of the theoretical predictions with the experimental results.
Holm-Christensen and Träger �11� directly used the full Navier-
Stokes equations and solved them numerically. But the procedure
was quite time-consuming and sensitive to the initial assumptions.

In 1982, Derendyaev and Sandalov �12� worked out a new
method for investigation of stability of a steady rotation of the
rotor systems with fluid. Making use of this method, they demon-
strated theoretically that a perturbed motion in the form of a pre-
cession arises at the boundary of the stability domain in the space
of the system parameters. If the external damping is small enough,
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the frequency of the precession is close to the rotational velocity.
The value of the critical speed of the rotor corresponds to that
found by Epishev �3� and Crandall �4�. In 1988, Derendyaev �13�
demonstrated that Andronof-Hopf bifurcation may occur in a
liquid-filled rotor system. In his work �14�, he analyzed the meth-
odological mistakes made by Wolf Jr. and Saito and Someya.

From recent publications on the dynamics of rotors with fluid
papers of Zhu Changsheng �15� and Derendyaev and Soldatov
�16� should be mentioned. The former author experimentally in-
vestigated the instability of an overhung rigid centrifuge rotor
with fluid making an emphasis on the study of stable and unstable
regions in the plane of rotational speed and fluid-fill ratio. How-
ever, this experimental work was not founded theoretically. The
latter authors made the next step in the study of dynamics of rotor
systems with fluid. They showed that the distributed model of the
rotor with fluid can be effectively replaced by a finite degrees-of-
freedom one. On the basis of the developed finite degrees-of-
freedom model that allows employing the classic methods of the
oscillation theory, the authors investigated the stability of the rotor
and showed that the discrete model gives the same results as the
continuous model.

Analogous but separate development has been performed by
Dosaev and Samsonov who proposed a discrete dynamic model
for hollow solid body containing viscous liquid �17�.

Summarizing all of the above-mentioned one can say that al-
though the rotor systems with fluid were extensively studied,
many important aspects of the rotor dynamics, such as self-excited
vibrations, their stability, bifurcation processes, transition to cha-
otic oscillations, did not receive an exhaustive treatment. The ba-
sic reason is that the fluid is a multi degrees-of-freedom �distrib-
uted� system, for which it is very problematic to employ classic
methods of the oscillation theory. The main disadvantage of the
Galerkine’s discretization method and the finite element methods
�FEM� that are widely used nowadays is that both procedures are
generally unfounded and not physically transparent enough. For
instance, the direct calculation used by FEM is certainly not the
best solution for the problem at hand. Besides this, it requires an
immense amount of calculation time. Both methods have to be
checked against experiments only, i.e., they are not reliable at the
design stage. This implies that other methods, which would allow
one to unveil the global dynamics of the rotor systems with fluid,
are strongly necessary. Development of such methods could open
wide perspectives in the analysis of the dynamics of fluid-filled
rotor systems for researchers and engineers.

This paper is a development of work �16�. The novelty of the
paper consists of the study of the Andronov-Hopf bifurcation and
more detailed consideration of the instability phenomenon. The
paper is structured as follows. First, the continuous model for the
rotor partly filled with liquid is considered. The exact solution to
the problem is presented. Then, the finite degrees-of-freedom ana-
log of the system is described. The results obtained for both con-
tinuous and discrete models are compared. Third, on the base of
the discrete model, the Andronov-Hopf bifurcation is investigated.
Finally, conclusions and perspectives of the proposed method are
addressed in the Discussion and Conclusions.

The Continuous Model
In this section, the continuous model of a rotor partly filled with

incompressible liquid is shortly presented. The basic computations
and particulars can be addressed to papers �12,18,19�.

Let us consider the steady-state vibration of a cylindrical rotor
partly filled with liquid. The rotor is symmetrically mounted on
two rigid shafts the ends of which are viscoelastically supported in
two roller bearings �see Fig. 1�.

The system is analyzed under the following assumptions �12�:

�1� The system moves with constant angular velocity � around
axis Ox3 of the fixed right-handed Cartesian coordinate sys-
tem Ox1x2x3.

�2� The liquid is incompressible and concentrated in the layer
of width h.

�3� On the strength of the high rotational speed the gravity
force is neglected.

�4� The angular displacements of the shafts are negligibly
small, i.e., all particles of the liquid move in the plane that
is normal to the rotational axis.

�5� The cylinder is long enough, i.e., the edge effects are neg-
ligible.

�6� In the steady-state regime the liquid and the cylinder rotate
as a single whole.

With all above-mentioned assumptions, the governing equa-
tions of motion and the boundary conditions can be written as
follows:

The equations of motion for the rotor:

Mrz̈ = F + f

�̇ = � = const �1�

with M the mass of the cylinder, z=x1
0+ ix2

0 the complex variables
�i2=−1�, x1

0 ,x2
0 the coordinates of the cross point of the rotor axis

with plane Ox1x2, � the rotational angle, F=F1+ iF2 the complex
force determined as Fk=−/S�kjnjds, nj the components of the
outward unit vector n normal to the internal surface S of the rotor,

�kj = − p�kj + �� �vk

�xj
+

�v j

�xk
�, j,k = 1,2 �2�

the components of the stress tensor, p the pressure, � the coeffi-
cient of the dynamic viscosity of the liquid, vk the components of
the velocity vector v of the liquid particles, f =−Krz−Hrż the re-
action force of the bearings, where Kr and Hr are the stiffness and
the damping coefficients of the bearings, respectively.

The equations of motion for the viscous incompressible liquid:

Fig. 1 Cross section of rotor partly filled with liquid

Journal of Applied Mechanics JULY 2006, Vol. 73 / 581

Downloaded 04 May 2010 to 171.66.16.29. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�v

�t
+ �v � �v = −

�p

�
+ v�v, div v = 0 �3�

with � the mass density of the liquid and �=� /� the coefficient of
kinematic viscosity.

The boundary conditions:

� �	

�t
+ �v � 	��

	=0
= 0,

�v�S = �V�S,

��kj
�	

�xj
�

	=0
= − p*

�	

�xk
�4�

where 	�x1 ,x2 , t�=0 is equation of the free surface of the liquid,
V is the velocity of the rotor’s surface at point x�S, p* is the
pressure at the free surface.

In 1949, Yuri I. Neimark �20� developed a powerful tool for
parametric analysis of physical systems described by a set of lin-
ear differential equations. In literature, his method is referred to as
the D-decomposition method �see �27�, for instance�. An inter-
ested reader may find a detail description of the method in refer-
ence �26�. Neimark demonstrated that the space of the system
parameters can be decomposed into domains with different num-
ber of the “unstable” eigenvalues �eigenvalues with positive real
parts that correspond to exponential growth�. Knowing this num-
ber in any point of the parameter space allows for a direct deter-
mination of the number of “unstable” eigenvalues for any param-
eter set of the system.

Mathematically, the D-decomposition procedure is completely
analogous to a conformal mapping. The idea of this method is to
map the imaginary axis of the complex plane of a system eigen-
value �corresponding to the boundary between the stability and
instability domains� into the space/plane of the system parameters.
The mapping rule follows from the characteristic equation, which
should be written to express the chosen parameters explicitly.
Once the mapping is accomplished, a mapped line
�D-decomposition curve or D-curve� is obtained, which divides
the parameter plane into domains with different number of roots
possessing a positive real part. It is customary to call this number
degree of instability, whereas the corresponding domains are re-
ferred to as domains with different degree of instability.

Physically, the term “degree of instability” implies a certain
dynamic regime. If the system parameters belong to a domain
with zero degree of instability, then the system is stable �natural
revolution of a rotor, for instance�. If not, the system gets un-
stable. The degree of instability defines peculiarities of the oscil-
lation build-up process. Crossing the D-curve �that is equal to a
change in the system parameters� implies transition from one re-
gime to another. This may be accompanied by a bifurcation pro-
cess.

In work �12�, it has been demonstrated that instability of the
steady rotation is directly connected with the precession regime.
The values of the parameters, at which the precession is possible,
determine the boundaries of domains with different degree of in-
stability in the space of the system parameters. In our paper, we
will follow the methodology developed in Refs. �12,20�.

Let the rotor perform a precessing motion of small radius 

with frequency �. We introduce the moving coordinate system
O� in the following way: �1� the origin point O coincides with
the center of the cross section of the cylinder; �2� axis O� coin-
cides with the junction line of the precession center O1 and origin
O �see Fig. 2�. In the moving coordinate system we introduce the
polar coordinate system Or�. In the steady-state regime, the liq-
uid rotates with the rotor as a single whole, i.e.,

v = v0 = �0re�, p = p0 = p* +
���r2 − b2�

2
�5�

where �0=�−� is the angular frequency of the natural rotation of
the rotor, b=a−h is the internal radius of the cylindrical liquid
layer in the steady-state rotation regime, a is the internal radius of
the cylinder.

The solution to the problems �1�–�4� linearized around condi-
tion �5� can be represented in the form �12�

u = 2 Re���0 + 2�

�0
c1 −

�0 − 2�

�0

c2

r2 + i
Z1�kr�

r
�ei��

v = 2 Re��i
�0 + 2�

�0
c1 + i

�0 − 2�

�0

c2

r2 − kZ0�kr� +
Z1�kr�

r
�ei��

p

�
=

p*

�
+

1

2
�2�r2 − b2� + 2 Re��2
r

2
+ i

4�2 − �0
2

�0
�c1r +

c2

r
�

− 2�Z1�kr�� �6�

where u and v are the radial and azimuth components of the
velocity field, Zn�kr�=c3e−�aH1

�2��kr�+c4e�bH1
�1��kr�, Hn

�1� and Hn
�2�

are the Hankel functions of order n, k=��i− ��0 / 	�0	��, �

=
	�0	 /2�, and ci, i=1,4 are unknown constants that can be
found from the boundary conditions:

3 − �

1 − �
c1 +

1 + �

1 − �

c2

a2 +
i

a
Z1�ka� = 0

i
3 − �

1 − �
c1 − i

1 + �

1 − �

c2

a2 − kZ0�ka� +
1

a
Z1�ka� = 0

1 + �

1 − �

4i

b3c2 +
2k

b
Z0�kb� + �k2 −

4

b2�Z1�kb� = 0

−
�2�3 − ��
�1 − ��2 ibc1 +

i

b
�1 + ��� �2 − 4� + 2

�1 − ��2 −
4

k2b2�c2 − 2
1 − �

kb
Z0�kb�

+ �2� − 1

1 − �
+ 4

1 − �

k2b2 �Z1�kb� = −
1

2
�
b�2 �7�

with �=� /�.
Integrating stresses �2� applied to the internal surface of the

rotor, one obtains expressions for the components of the hydrody-
namic force F per unit length:

Fig. 2 Noninertial reference system

582 / Vol. 73, JULY 2006 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.29. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



F� = 2�a� Re�1

2
�2
a + 2i

�� + ��
a

c2�
F = − 4���� + ��Re�c2� �8�

Substituting now expressions �8� into the first terms of Eqs. �1�
and introducing the following dimensionless variables:

K =
Kr

ml�
2 , H =

Hr

ml�
, m =

M

M + ml
, E =

�

�a2 ,

F�
* =

F�

ml�
2


, F
* =

F

ml�
2


, � =
b

a
�9�

with ml=���a2−b2� the mass of the liquid filling, E the Ekman
number, and � the fluid-fill ratio, we obtain the relationships for
the system parameters in the case of the circular precession:

K −
m

1 − m
�2 = F�

*�2

H� = F
*�2 �10�

The dimensionless components of the hydrodynamic force
F�

* ,F
* depend on parameters �, E, �, and m only. When the latter

three parameters are fixed, Eqs. �10� define a curve in the plane
�K ,H�, the points of which correspond to such values of the pa-
rameters when the circular precession can occur. This curve, in
accordance with the above-made notes, divides the plane �K ,H�
into domains with different degree of instability. Following Ref.
�20� we will call it the D-curve.

Figure 3 represents the D-decomposition �solid curve with
shading� of the plane �K ,H� for E=10−5, �=0.9, m=0.6. The
arrows along the curve point out the direction of increase of the
parameter �. The D-curve is formed by the regular branch, along
which the parameter � changes from −� to +�, and the singular
straight line K=0 corresponding to �=0. The existence of the
singular straight line is conditioned by the fact that the compo-
nents of the hydrodynamic force are equal to zero when �=0
�no precession�.

Due to the axial symmetry of the problem the degree of insta-
bility of the system is always an even number. This is why it is
reasonable to shade the D-curve in the following way: a passing
through the boundary of domain D�n� from the unshaded side to
the shaded one corresponds to an increase of the degree of insta-
bility by 2, i.e., it is equivalent to a passing to the domain D�n
+2�. The stability domain is designated as D�0�. For the case at

hand, there are two stability domains: D1�0� and D2�0�. The first
domain comprises the point corresponding to the infinitely large
damping coefficient �see Fig. 3�. The second one abuts upon the
origin of the plane �K ,H�. It is not visible in Fig. 3 and shown in
Fig. 4 in a bigger scale.

Figures 5 and 6 demonstrate the effect of the Ekman number E
and the filling parameter � on the sizes of the domains with dif-
ferent degree of instability. For the sake of convenience, the shad-
ing is skipped in Fig. 5. The dashed line corresponds to values
E=0.5�10−5, �=0.9, m=0.6, while the dashed-dotted line corre-
sponds to E=10−5, �=0.7, m=0.6. As is seen from the pictures,
the decrease of the Ekman number leads to the general distension
of the figures that leads to a decrease of the stability domains
D1�0� and D2�0�. The decrease of the fluid-fill ratio distends
mainly the lower part of the figure and somewhat draws up,
slightly constricting, the upper oval.

Fig. 3 D-decomposition of the plane of the parameters of the
bearings Fig. 4 D-decomposition of the plane of the parameters of the

bearings: expanded scale

Fig. 5 Effect of the Ekman number and the fluid-fill ratio on
D-decomposition of the plane of the parameters of the bearings
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The Finite Degrees-of-Freedom (Discrete) Model
This section presents the discrete analog for the model of the

rotor partly filled with fluid.
The model consists of a disk of mass md and radius Rd, sym-

metrically mounted on an isotropic absolutely rigid shaft, which is
supported into two viscoelastic roller bearings according to the
Laval scheme, and of a ring of mass mr and radius Rr sliding over
the disk surface with friction �see Fig. 7�. The centers of the disk
and of the ring are connected elastically. The disk models the
rotor, while the ring models the liquid filling.

The further assumptions adopted are:

�a� When the ring is sliding over the disk, in the contact

points an interaction force arises that is proportional to
the relative velocity and not collinear to it.

�b� The disk is in nonlinear viscoelastic fixation on the shaft
AA� and rotates with constant angular velocity � in the
horizontal plane.

�c� All points of the system move in the horizontal plane
only, i.e., the velocity field does not depend on the coor-
dinate along the axis of the steady-state rotation.

We introduce two right-handed reference frames: the fixed co-
ordinate system Oxyz, the axis Oz of which is parallel to the shaft
AA�, and the moving coordinate system O1� fixed on the disk.
The origin of the fixed frame lays on the axis of the steady rota-
tion. The point O1 coincides with the disk center. We designate the
center of the ring as O2.

In accordance with all the above-mentioned assumptions, the
disk experiences affection of the force:

fd = − �kd + k2d	r01	��r01 − �d + 2d	r01	��r01 + Fint �11�

with r01=x1ex+y1ey the radius vector of the point O1 in the fixed
reference frame; kd ,d and k2d ,2d the linear and nonlinear parts
of the stiffness and the damping coefficients of the bearings, re-
spectively; � and � the parameters of nonlinearity such that
��0 and ��2 �21�. For instance, for the ball bearings, �=1/2
�see �22��. Fint is the interaction force between the disk and the
ring. This interaction can be represented as the resultant force

fr = Fint = − kr�r02 − r01� − �r� �vr − vd�dl − �r� �ez,�vr − vd��dl

�12�

and the moment about the point O2

Mr = − � �r2,�r�vr − vd� + �r�ez,�vr − vd���dl , �13�

applied to the ring. Here r02=x2ex+y2ey is the radius vector of the
point O2 in the fixed reference frame, kr is the stiffness coefficient
of the coupling of the centers of the disk and ring, �r is the
coefficient of the Raleigh friction, �r is the coefficient of the gy-
roscopic force, vd is the velocity of an arbitrary point M�x ,y� of
the disk contiguous to the ring, vr is the velocity of a point of the
ring contiguous to the point M, r2 is the vector from the point O2
to the point M. As it is seen from Eqs. �12� and �13�, the interac-
tion in the contact between the disk and the ring is represented by
the frictional and the gyroscopic components. Integration in for-
mulas �12� and �13� is taken over the ring’s length, where dl is an
arc element of the ring. Substituting into �12� and �13�

vd = ṙ01 + ��1,r1�, vr = ṙ02 + ��2,r2� �14�

with r1= �x−x1�ex+ �y−y1�ey, r2= �x−x2�ex+ �y−y2�ey, �1= �̇1ez

the angular velocity of the disk, �2= �̇2ez the angular velocity of
the ring, and integrating over the ring, one obtains:

fr = �− kr�x2 − x1� − �rLr��ẋ2 − ẋ1� + �y2 − y1��̇1�

+ �rLr��ẏ2 − ẏ1� − �x2 − x1��̇1�ex + �− kr�y2 − y1�

− �rLr��ẏ2 − ẏ1� − �x2 − x1��̇1�

− �rLr��ẋ2 − ẋ1� + �y2 − y1��̇1�ey �15�

Mr = − ez�rLrRr
2��̇2 − �̇1� , �16�

with Lr=2�Rr the length of the ring.
We will use further the Lagrange formalism to describe the

dynamic behavior of the system. The kinetic and the potential
energies for the disk and for the ring have the form �index d
designates the disk, while index r designates the ring�:

Fig. 6 Effect of the Ekman number and the fluid-fill ratio on
the boundaries of D2„0… domain

Fig. 7 Discrete model of the rotor with liquid
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Td =
md

2
�ẋ1

2 + ẏ1
2� +

1

2
Id�̇1

2,

Ud =
kd

2
�x1

2 + y1
2� +

k2d

�� + 2�
�x1

2 + y1
2���+2�/2, �17�

Tr =
mr

2
�ẋ2

2 + ẏ2
2� +

1

2
Ir�̇2

2,

Ur =
kr

2
��x2 − x1�2 + �y2 − y1�2� , �18�

with Id and Ir the central moments of inertia about axis Ox3 of the
disk and of the ring, respectively.

Expressions �17� and �18� allow one to compose the Lagrange
function L=T−U, while Eqs. �11�–�13� give the expressions for
the nonconservative generalized forces and the moment. Substi-
tuting the forces and the moment along with the Lagrangian into
the Lagrange equation, one obtains:

mdẍ1 + kdx1 + kr�x1 − x2� + k2d�x1
2 + y1

2��/2x1

= − dẋ1 − 2d�ẋ1
2 + ẏ1

2��/2ẋ1 + �rLr��ẋ2 − ẋ1� + �̇1�y2 − y1��

− �rLr��ẏ2 − ẏ1� − �̇1�x2 − x1�� �19�

mdÿ1 + kdy1 + kr�y1 − y2� + k2d�x1
2 + y1

2��/2y1

= − dẏ1 − 2d�ẋ1
2 + ẏ1

2��/2ẏ1 + �rLr��ẏ2 − ẏ1� − �̇1�x2 − x1��

+ �rLr��ẋ2 − ẋ1� + �̇1�y2 − y1�� �20�

mrẍ2 + kr�x2 − x1� = − �rLr��ẋ2 − ẋ1� + �̇1�y2 − y1�� + �rLr��ẏ2 − ẏ1�

− �̇1�x2 − x1�� �21�

mrÿ2 + kr�y2 − y1� = − �rLr��ẏ2 − ẏ1� − �̇1�x2 − x1�� − �rLr��ẋ2 − ẋ1�

+ �̇1�y2 − y1�� �22�

Id�̈1 = �rLrRr
2��̇2 − �̇1� + Mdr �23�

Ir�̈2 = − �rLrRr
2��̇2 − �̇1� �24�

with Mdr the driving moment.
The system of Eqs. �19�–�24� has a particular solution:

x1 = x2 = 0; y1 = y2 = 0; �̇1 = �̇2 = � �25�

corresponding to the steady-state rotation regime around axis Oz.
We assume that the angular velocity of the disk �̇1 is being

maintained constant by the special driving moment Mdr and equal
to �. Linearizing then system �19�–�24� near solution �25� and
introducing complex variables

z1 = x1 + iy1; z2 = x2 + iy2, �26�

one can obtain the following system of equations:

�mdz̈1 + kdz1 + kr�z1 − z2� = − dż1 + rLr��ż2 − ż1� − i��z2 − z1��
mrz̈2 + kr�z2 − z1� = − rLr��ż2 − ż1� − i��z2 − z1��
Ir��̈2 = − �rLrRr

2��̇2
�

�27�

where ��̇2 is the deviation of the angular velocity of the ring from
the steady-state solution and r=�r+ i�r. The term r can be re-
ferred to as the complex friction coefficient. The real part of the
complex friction describes the Raleigh friction, while the imagi-
nary part corresponds to the gyroscopic force.

Note that the latter equation of system �27� is segregated. Its
solution can be written as

��̇2 = C exp�−
�rLrRr

2

Ir
t� �28�

One can see from �28� that when time t tends to infinity the an-
gular velocity of the ring �̇2 approaches the angular velocity of
the disk �.

Due to the symmetry properties of the system, Eqs. �27� are
invariant with respect to the zero-time reference and a quarter-turn
�� /2� of the reference frame around the vertical axis. Thus, the
first two equations in �27� admit the particular solutions of the
kind

z1 = ẑ1 exp��t�, z2 = ẑ2 exp��t� �29�

Introducing new variables

w1 = ẑ1, w2 = ẑ2 − ẑ1, �30�

one yields

�mdw1�2 + kdw1 − krw2 = − dw1� + rLrw2�� − i��
mrw2�2 + mrw1�2 + krw2 = − rLrw2�� − i�� � �31�

The characteristic equation of system �31� has the form

�md�2 + �d + kd − kr − rLr�� − i��
mr�

2 mr�
2 + kr + rLr�� − i��

� = 0 �32�

Since � is continuously dependent on the parameters of the
problem, the change of the degree of instability can take place
under appearance of an imaginary number �= i�. Let us define
those values of the damping coefficient d and the stiffness kd of
the bearings, which provide imaginary � at given values of the
other parameters.

Substituting �= i� into Eq. �32�, introducing dimensionless pa-
rameters

Kd =
kd

md�2 , Hd =
d

md�
, �1 =

�rLr

mr�
, �2 =

�rLr

mr�
,

� =
md

md + mr
, Kr =

kr

mr�
2 , � =

�

�
, �33�

separating real and imaginary parts and solving the obtained equa-
tions with respect to Kd and Hd, one obtains:

Kd =
�2

�

�Kr − �2�� − 1� − �2��Kr − �2�� − 1� − ��2� + �1
2�� − 1�2

�

Hd = �1 − �−1�
�1�3�� − 1�

�
�34�

with �= �Kr−�2��−1�−�2�2+�1
2��−1�2.

If the parameters �, �1, �2, and Kr are fixed, Eqs. �34� define
D-curve in the plane �Kd ,Hd�, which, alone with the singular
straight line Hd=0, forms D-decomposition of the plane with do-
mains of different degree of instability.

As is seen from �34�, the D-curve crosses the straight line
Hd=0 at the points

Kd = 0, Kd =
Kr − �

��Kr − 1�
�35�

We assume that the parameters of the discrete model are analo-
gous to those of the continuous one. This implies that, for in-
stance, the parameter � must be of the same order as the analo-
gous parameter m of the continuous model, i.e., ��m �see Eq.
�9��. We will choose the parameter Kr in such a way that the
crossing of Hd=0 would take place at the same point �the same
value Kd=Kd

0� as for the corresponding value of K=K0 in the case
of the continuous model. To this effect, we will use Eq. �35�. One
has to note that to reach the full equivalency of both models the
value K0 should be equal to Kd

0� / �1−��, since in the case of the
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continuous model the stiffness coefficient Kr is normalized by the
mass of the liquid ml, while in the case of the discrete model this
coefficient �kd� is normalized by the mass of the disk �rotor� Md.
The parameters �1 and �2 have to be taken to reach the maximal
correspondence of the boundaries of the domains D2�0� in both
cases.

In particular, for E=10−5, �=0.9 and m=0.4 one yields �1
=0.021, �2=−2.6, Kr=1.18, and �=0.57. Figures 8�a� and 8�b�
demonstrate D-decompositions of the plane �Kd ,Hd� for the case
of the continuous �the solid line� and the discrete �dashed line�
models for the above-given parameters. As is seen from the figure,
the curves coincide almost perfectly, at least, in the upper part.

It should be mentioned that in the whole plane �Kd ,Hd�, the
D-curves differ quite noticeably �see Fig. 9�. It is striking, how-
ever, that the difference between two upper parts of the “eights” is
less than 5%. The difference between the lower parts of the
“eights” has a transparent physical explanation. The point is that
the upper part of the “eight” corresponds to the resonance excita-
tion of the slow wave ���1� propagating over the free surface of
the liquid, while the lower part is associated with excitation of the
faster mode ���1�. On the other hand, the viscosity of the liquid
has significant influence on the rotor dynamics and on the reso-
nances, in particular. This implies that the analogous discrete
model must account for the effect of the viscosity appropriately.
Further, the power of dissipation in the Navier-Stokes problem �3�

Nc =
�

2 �
i,j=1

3 �
D

� �vi

�xj
+

�v j

�xi
�2

dx1dx2dx3, �36�

to which the power of dissipation in the discrete model

Nd = �r� 	vr − vd	2dl �37�

is to be compared, is a function of frequency. In Eq. �36� D is the
liquid volume. Therefore, the friction coefficient �r must be taken
as a convolution integral. In the model described above, �r is a
constant. Thereby, having satisfied the first resonance, the discrete
model cannot automatically satisfy the second one. This explana-

tion is confirmed by the fact that with decrease of the Ekman
number �the viscosity parameter� the curves become closer.

Andronov-Hopf Bifurcation: “Safe” and “Dangerous”
Boundaries of the Stability Domain

In actual systems, slow changes of parameters can occur even-
tually. This evolution can result in that that the system will ap-
proach a boundary of the stability domain in the space of param-

Fig. 8 D-decomposition of the plane of the parameters of the bearings for the continuous „solid line… and the discrete
„dashed line… models: „a… boundaries of D2„0… „expanded scale…; „b… D1„0… domains

Fig. 9 General view of D-decomposition of the plane of the
parameters of the bearings for the continuous „solid line… and
the discrete „dashed line… models
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eters. If this boundary is “dangerous,” then perturbations of the
system can lead to rise of self-excited vibrations even for the
system parameters belonging to the stability domain. If the bound-
ary is “safe,” then the appearance of the self-excited vibrations
can take place if the system has passed out the stability domain.
This process is referred to in the literature as the Andronov-Hopf

bifurcation or the bifurcation of generation of a limit cycle �see
�23,24��. Let us demonstrate that in the considered discrete model,
when the system parameters go in/out the stability domain, the
Andronov-Hopf bifurcation can occur.

Using the complex variables �26�, one can obtain from Eqs.
�19�–�22�

�mdz̈1 + kdz1 + kr�z1 − z2� + k2d	z1	�z1 = − dż1 − 2d	ż1	�ż1 + rLr��ż2 − ż1� − i��z2 − z1��
mrz̈2 + kr�z2 − z1� = − rLr��ż2 − ż1� − i��z2 − z1�� � �38�

Introducing dimensionless variables

w1 = z1/Rd, w2 = �z2 − z1�/Rd, t� = �t , �39�
we will seek the solution to the system �38� in the form

w1 = 
1 exp�i�t��, w2 = 
2 exp�i�t�� �40�

Substituting this solution into Eqs. �38� one can come up to the following system of nonlinear equations with respect to 
1 and 
2:

��Kd + i�Hd − �2�
1 + ��−1 − 1���� − 1���2 − i�1� − Kr�
2 = − K2d	
1	�
1 − iH2d	�
1	��
1

�2
1 + ��2 + �� − 1���2 − i�1� − Kr�
2 = 0
� �41�

where

K2d =
k2dRd

�

md�2 , H2d =
2dRd

���−1

md
�42�

and the other denotations are taken from �33�.
Note that if the system parameters belong to the D-curve, system �41� admits a nontrivial �with evanescent 
1 and 
2� solution such

that

det A = 0 �43�
where matrix

A = �Kd
* + i�Hd

* − �*2 ��−1 − 1����* − 1���2 − i�1� − Kr�
�*2 �*2 + ��* − 1���2 − i�1� − Kr

� �44�

and the star means that the parameters belong to the D-curve, i.e., satisfy to Eqs. �34�.
Excluding 
2 from �41�, one obtains

�Kd + i�Hd − �2�
1 − ��−1 − 1�
�� − 1���2 − i�1� − Kr

�2 + ��2 − i�1��� − 1� − Kr
�2
1 = − K2d	
1	�
1 − iH2d	�
1	��
1 �45�

There always exists a simple root 
1=0 corresponding to the steady-state rotation regime, or, to be more accurate, to the regime when
only �̇2 changes tending to �. Dividing �45� by 
1, one yields an equation for nontrivial values of the precession radius
�
1 can be always supposed to be real and positive�, which, after separation of real and imaginary parts, can be reduces to the following
system:

��Kd − �2� − ��−1 − 1�
�2

�
���2�� − 1� − Kr���2 + �2�� − 1� − Kr� + �1

2�� − 1�2� = − K2d	
1	�

Hd + ��−1 − 1�
�3

�
�1�� − 1� = − H2d	�
1	� � �46�

with �= �Kr−�2��−1�−�2�2+�1
2��−1�2.

Introducing deviations of the dimensionless parameters Kd, Hd,
and � as

�Kd = Kd − Kd
*, �Hd = Hd − Hd

*, �� = � − �*, �47�

accounting for Eq. �43�, and assuming �Kd, �Hd, and �� to be
small, one has

�K2d	
1	� −
dKd��*�

d�
�� = − �Kd

H2d	�*
1	� −
dHd��*�

d�
�� = − �Hd

� �48�

Assuming now that �=�, we obtain the following solution with
respect to 
1:

	
1	� =

dKd

d�
�Hd −

dHd

d�
�Kd

dHd

d�
K2d − 	�	�H2d

dKd

d�

or 	
1	� =

dKd

dHd
�Hd − �Kd

K2d − 	�	�H2d
dKd

dHd

�49�

To avoid jumps from one part of the D-curve to another, we take
the deviations �Kd and �Hd normal to the boundary. Note that Eq.
�49� can be rewritten as

	
1	� = ±
	l� � n� 	

dHd

d�
K2d − 	�	�H2d

dKd

d�

�50�

with
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l = �dKd

d�
,
dHd

d�
�

the tangential vector to the D-curve and n= ��Kd ,�Hd� the vector
normal to the boundary. The plus/minus sign determines
“entrance”/“exit” in/from the stability domain. Thus, the dynamic
behavior in the vicinity of the boundary is defined by the sign of
the denominator.

If generation of a periodic motion takes place when the system
comes out of the stability domain, then this bifurcation is called
“supercritical.” In this case, it is conventional to call the excitation
of self-excited vibrations “soft” and to denote the boundary as
“safe.” In Fig. 10 the “safe” intervals of the bifurcation curve are
represented by the white circles. The “dangerous” part is denoted
by the crosses. In the vicinity of the “dangerous” curve, the peri-
odic motion of a kind of a circular precession of a small radius
can exist in the stability domain of the steady-state rotation re-
gime. This motion is generated when the system goes in the sta-
bility domain through the “dangerous” sector. In this case, the
excitation of self-excited vibrations is called “hard” and the bifur-
cation as “subcritical.”

In calculations, the following parameters were taken:

� = 0.57, Kr = 1.18, �1 = 0.021, �2 = − 2.6,

K2d = − 0.02, H2d = 0.02, � = 1 �51�
Figure 10 corresponds to the case of a so-called soft or retro-

grading nonlinearity �K2d�0�. The curve consists of the “safe”
interval that abuts upon the abscissa axis and the upper “danger-
ous” one. Formula �50� along with the D-curve demonstrates that
the lower part of the curve is always “safe” for the retrograding
nonlinearity. If one tests the case of the subcritical bifurcation for
this interval, the denominator is always negative, i.e., there exists
no positive roots. As far as the upper part of the curve is con-
cerned, the “safe” interval extends as the parameter K2d decreases.
For K2d=−0.8 the right-hand boundary of the “dangerous” branch
corresponds to the point Kd=0.16, Hd=0.03. For K2d=−1.1 this
boundary is located at Kd=0.05, Hd=0.044. For K2d�−1.2, all
boundary becomes “safe.”

In the case of a progressing nonlinearity, the picture reminds the
case of the retrograding nonlinearity shown in Fig. 10. This is

valid if K2d�0.04. When K2d�0.04, the “dangerous” interval
starts to extend to the lower part of the D-curve. For instance, for
K2d=0.9 the right-hand boundary of the “safe” interval is located
at the point Kd=0.2, Hd=0.001, while for K2d=2 this boundary
lies at Kd=0.05, Hd=5�10−5. When K2d�3 the all boundary
becomes “dangerous.”

Figure 11 shows “dangerous” and “safe” intervals of the bound-
ary of the D1�0� domain for the parameters �51� �retrograding
nonlinearity�. As is seen from the figure, the boundary consists of
one “dangerous” and two “safe” zones. With increase of K2d the
upper “safe” interval extends till the derivative dKd /dHd changes
its sign �at the point Kd=32, Hd=45�. It should be noted that the
boundary is always “dangerous” in the interval Hd= �0.04;45�. If
K2d decreases, the “dangerous” part extends. When K2d=−0.18,
the lower “safe” part disappears, while the upper “safe” zone is
confined by the interval Kd= �0;3.2� on which the derivative
dKd /dHd is positive. If the nonlinearity is progressive, the inter-
vals with negative dKd /dHd are always “safe.” The intervals with
the positive dKd /dHd can be either “safe” or “dangerous” depend-
ing on the parameters K2d and H2d.

Discussion and Conclusions
In this paper, we have proposed new approach for investigation

of fluid-filled rotor systems. The method consists in the develop-
ment of finite degrees-of-freedom �discrete� analogs of the rotor
systems. Although at the first time the development of the discrete
model of the rotor requires also the development of the continuous
models to identify the parameters of both models, one can obtain
qualitatively and quantitatively complete correspondence of dy-
namic behavior of the systems. Furthermore, the method allows
one to employ the tools of the theoretical mechanics and the os-
cillation theory. This implies that one can go farther in the study
of the rotor systems with fluid and investigate such questions as
bifurcations, transition to the chaotic oscillations, amplitude dis-
persion of the fluid, nonlinear effects of the bearings, wave effects
in the shaft, etc.

Of course, the authors of this paper are aware of that that it is
impossible to account for everything and that a problem, having
been solved once by some method, can be also solved by means
of a different procedure. However, the attractiveness of our

Fig. 10 “Dangerous” and “safe” intervals of the D2„0… stability
domain

Fig. 11 “Dangerous” and “safe” intervals of the D1„0… stability
domain
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method primarily consists of the simple mechanical model that
provides clear physical interpretation of the results obtained. This
can be very valuable in engineering practice. Potentially, the
method presented in this paper may contribute to the solution and
understanding of a much broader class of rotating machinery
problems. In 1885, Zhukovskiy �25� demonstrated that the prob-
lem of motion of a solid, having a cavity completely filled with a
homogeneous ideal fluid that performs potential motion, can be
reduced to a finite degrees-of-freedom one where the fluid can be
replaced by an equivalent solid. We are sure that an equivalent
approach can be developed for the rotor systems partly/completely
filled with viscous incompressible/compressible homogeneous/
stratified fluid as well. Development of such a general approach is
methodologically advantageous, for it will allow one to properly
take into account such an important and complicated effect as
combined fluid filling with weighted particles.
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This paper provides a new perspective to the problem of reconfiguration of a rolling
sphere. It is shown that the motion of a rolling sphere can be characterized by evolute-
involute geometry. This characterization, which is a manifestation of our specific selec-
tion of Euler angle coordinates and choice of angular velocities in a rotating coordinate
frame, allows us to recast the three-dimensional kinematics problem as a problem in
planar geometry. This, in turn, allows a variety of optimization problems to be defined
and admits infinite solution trajectories. It is shown that logarithmic spirals form a class
of solution trajectories and they result in exponential convergence of the configuration
variables. �DOI: 10.1115/1.2164515�

1 Introduction
The rolling sphere epitomizes the complexity of diverse prob-

lems in mechanics involving geometry of rotations and its recon-
figuration has similarities with many engineering problems, such
as spacecraft attitude reorientation and manipulation of rigid ob-
jects using robotic fingers. The configuration of a rolling sphere is
described by two Cartesian coordinates of its center and three
orientation coordinates, and reconfiguration refers to the task of
designing a trajectory that enables it to roll from an arbitrary
configuration to a desired configuration. This problem has seen a
few solutions until date but new approaches and solutions to the
problem should be welcome since they can provide new insight
into the realm of rotational kinematics. In this paper, we show that
the kinematics of a rolling sphere can be described by evolute-
involute geometry and provide a fundamentally new approach to-
wards solving the reconfiguration problem.

To the best of our knowledge, Hammersley �1� provided the
first solution to the reconfiguration problem in 1983. A simpler
solution to the problem in the form of a three-step algorithm was
proposed by Li and Canny �2� in 1990. In the first step, the two
Cartesian coordinates of the sphere are converged to their desired
values. The second step generates an equatorial triangle on the
surface of the sphere and converges two of the three orientation
coordinates, and the third step uses a polhode to converge the
third orientation coordinate. An optimal solution, based on mini-
mization of integral of the kinetic energy of the sphere, was pro-
vided by Jurdjevic �3� in 1993. The results are elegant and indi-
cate that the optimal trajectories are described by elliptic
functions. In 2002, Mukherjee et al. �4� proposed two computa-
tionally efficient motion planning algorithms for the rolling
sphere. The first algorithm is based on planar geometry whereas
the second algorithm is based on spherical trigonometry.

In relation to the above papers, where the primary focus has
been the solution to the reconfiguration problem, this paper estab-
lishes a fundamental property of the motion of rolling spheres,
namely, the motion is equivalent to the action of wrapping and
unwrapping a taut rope on a planar curve. This evolute-involute
geometric characterization is a manifestation of our specific selec-

tion of Euler angle coordinates and choice of angular velocities in
the rotating coordinate frame. The planar geometric formulation
of the problem admits infinite solution trajectories and allows us
to pose a variety of optimization problems with different objective
functions, including the isoperimetric problem �5�. Clearly, the
importance of the paper lies in the generality of the adopted ap-
proach rather than the specific solution to the problem provided on
the basis of the approach.

In search of a class of solution trajectories for the sphere mo-
tion planning problem, discussed above, we investigate the
Sweep-Tuck algorithm �6� which provides the first and only solu-
tion to the feedback stabilization problem. For our open-loop geo-
metric problem, we show that the nonsmooth trajectories provided
by the Sweep-Tuck algorithm transform into a class of smooth
solution trajectories under limiting conditions. These solution tra-
jectories form an evolute-involute pair of logarithmic spirals and
result in exponential convergence of the configuration variables.

This paper is organized as follows: In Sec. 2 we present the
kinematic model of the rolling sphere and give an overview of the
Sweep-Tuck algorithm. In Sec. 3 we describe the motion of the
sphere using evolute-involute geometry and pose the reconfigura-
tion problem. In Sec. 4, we present an algorithm for partial recon-
figuration of the sphere. The flexibility of the partial reconfigura-
tion algorithm is exploited in developing the complete
reconfiguration algorithm in Sec. 5. In Sec. 6 we present simula-
tion results and concluding remarks are presented in Sec. 7.

2 Background

2.1 Kinematic Model. Consider an arbitrary configuration of
the sphere, as shown in Fig. 1�a�. We denote the Cartesian coor-
dinates of the sphere center by Q��x ,y� and adopt the z-y-z Euler
angle sequence �� ,� ,�� to represent the orientation of the sphere.
As per the z-y-z Euler angle sequence, the inertially fixed xyz
frame is first rotated about the positive z axis by angle �, −�
����, to obtain the frame x1y1z1. The frame x1y1z1 is then
rotated about the y1 axis by angle �, 0����, to obtain frame
x2y2z2. Finally, the x2y2z2 frame is rotated about the z2 axis by
angle � to obtain frame x3y3z3, which is fixed to the sphere. The
points P and R are defined to be the intersection points of the
sphere surface with the z3 and x3 axes, respectively. Assuming the
sphere to have unity radius without any loss of generality, and
denoting the angular velocities of the sphere about the x1, y1, z1
axes as �x

1, �y
1, �z

1, respectively, the state equations for �z
1=0 �the

assumption �z
1=0 is made to impose the constraint that the sphere

cannot spin about the vertical axis� can be written as follows �4�:
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ẋ = �y
1 cos � + �x

1 sin � �1�

ẏ = �y
1 sin � − �x

1 cos � �2�

�̇ = �y
1 �3�

�̇ = − �x
1 cot � �4�

�̇ = �x
1 tan ��/2� �5�

where � is defined as follows:

� = � + � �6�

The reorientation of the sphere refers to the task of bringing P to
the vertically upright position, and R, which then lies on the dia-
metrical circle in the xy plane, to lie on the positive x axis. This
can be achieved with �=0 and �=0, irrespective of the individual
values of � and �, as shown in Fig. 1�b�. This is related to the
notion of controllability and elaborated in �4�. Therefore, the
sphere can be completely reconfigured by designing trajectories
for �x

1 and �y
1 that result in

x = 0, y = 0, � = 0, � + � = � = 0 �7�

2.2 Effect of Rotations About Moving Coordinates. Con-
sider the motion of the sphere for the following actuations:

�A� �y
1�0, �x

1=0

�B� �x
1�0, �y

1=0, ��0

The motion of the sphere for these actions is explained with the
help of Fig. 2. Under action �A�, the sphere moves along straight
line CF as � changes. Let F be the point on this straight line
where the sphere would have �=0. Since the sphere rolls without
slipping, this point remains invariant under action �A�. For actua-
tion �B�, the instantaneous radius of the path traced by the sphere
on the xy plane can be computed using Eqs. �1�–�4� as follows:

� = � �ẋ2 + ẏ2�3/2

ẋÿ − ẏẍ
� = tan � �8�

Since �y
1=0, � is maintained constant. This implies that the con-

tact point of the sphere, the center of the sphere, and points P and
F move in the horizontal plane along circular arcs whose center
lie on the vertical axis that passes through C. We can easily show
that distance CF satisfies

CF = tan � − � �9�

The point C remains fixed under actuation �B�, but under actua-
tion �A� moves away from F, as � increases, and converges to F,
as � converges to zero. The variables � and � in Eqs. �4� and �5�

change during actuation �B� but remain constant during actuation
�A�. During actuation �B�, the change in variable � is given by the
expression

	� = 	� + 	� = 	��1 − sec �� �10�

2.3 Partial Reconfiguration Using the Sweep-Tuck
Algorithm. In this section we present the main results of the
Sweep-Tuck algorithm detailed in �6�. With reference to Fig. 1,
we define partial reconfiguration as the task of converging Q to
the origin of the Cartesian coordinate frame and P to the vertically
top position. This allows R to have an arbitrary location on the
equatorial circle but requires us to satisfy

x = 0, y = 0, � = 0 �11�
Now consider an arbitrary configuration of the sphere as shown in
Fig. 3. The points C and F in Fig. 3 were defined earlier in Sec.
2.2 using Fig. 2. It can be shown that

�CF,CO� � �0,0� Û �x,y,�� � �0,0,0� �12�
and this motivates the following remark:

Remark 1. The sphere in Fig. 3 will be partially reconfigured in
the sense of Eq. �11� if and only if �CF ,CO� converge to �0,0�.

Towards the goal of partial reconfiguration, we now recall the
following theorem from �6�.

DUAL-POINT THEOREM. Let C and F be two points in the xy
plane with origin at O, as shown in Fig. 4. Suppose 
= �OCF is

Fig. 1 „a… An arbitrary configuration of the sphere; „b… desired configuration of the sphere

Fig. 2 Actuations „A… and „B…
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acute, and let �CF /CO�=� ,�� �1,��. If 
 satisfies the condition

0 � 
  cos−1�1/�� �13�

then there exists a point C� on the extended line CF such that for

�= �OC�F, 0�
���,

�C�F/C�O� = � ¯ �i� 0  �C�O/CO�  1 ¯ �ii�


� � 
 ¯ �iii� �14�
Remark 2. In �6� the Dual-Point Theorem is stated and proved

for both cases �� �1,�� and �� �0,1�. However, we restrict our-
selves to the case �� �1,�� in this paper.

The intermediate angle, 
�, can be expressed as follows �6�:

tan 
� =
− �1 − �2�sin 


�1 + �2� cos 
 − 2�
, � � �1,�� �15�

and it can be shown that Eq. �13� implies

cos−1� 1

�
	  
� � � �16�

Now consider Fig. 5 where C and F define an arbitrary configu-
ration of the sphere. Suppose 
= �OCF satisfies the conditions
in Eq. �13�. Let C� in Fig. 5 be the point on line CF that satisfies
the conditions in Eq. �14�. We now define three specific maneu-
vers of the sphere.

DEFINITION 1 �DPT MANEUVER�. A “Dual-Point Tuck” (DPT)
Maneuver is an actuation (A) that moves the sphere such that C
moves to C�.

From Dual-Point Theorem we know that a DPT maneuver re-
sults in 
��
. Therefore, 
� can be restored to the value 
 in one
of two ways as shown in Fig. 5. This motivates the next definition.

DEFINITION 2 �RS MANEUVER�. Following a DPT maneuver, an
actuation (B) that moves the sphere to restore 
� to 
 is defined as
a “Restoring-Sweep” (RS) Maneuver.

DEFINITION 3 �PS MANEUVER�. An actuation (B) that moves the
sphere at the initial time to bring �OCF to 
� is defined as a
“Preliminary-Sweep” (PS) Maneuver.

We now present the “Sweep-Tuck” algorithm �6�.
Sweep-Tuck Algorithm. Consider a sphere whose partial con-

figuration �x ,y ,��, defined by the location of points C and F,
initially satisfies 0�� �� /2−�� and �CF /CO�=�� �1,��. If 

is chosen in accordance with Eq. �13�, partial reconfiguration in
the sense of Eq. �11� can be achieved through a PS maneuver
followed by repeated application of RS-DPT maneuvers.

The Sweep-Tuck algorithm utilizes the fact that alternate RS
and DPT maneuvers decrease both CF and CO in geometric pro-
gression; the rate at which CF and CO decrease depends on n and

 �6�. The distance traversed by C during each DPT maneuver
also depends on n and 
 and is given by the relation

CC� =
2�CO�� cos 
 − 1�

��2 − 1�
�17�

3 Geometry of Reconfiguration

3.1 The Evolute-Involute Pair. We investigated the motion
of C and F in Sec. 2.2, where the actuating inputs �x

1 and �y
1 were

not applied simultaneously, i.e., �y
1=0 when �x

1�0, and vice
versa. In this section we investigate the motion of C and F under
simultaneous variation of �x

1 and �y
1. To this end we first note that

the coordinates of C and F can be obtained from Fig. 3 as follows:

Cx = x − tan � cos � Fx = x − � cos �

Cy = y − tan � sin � Fy = y − � sin � �18�
By differentiating the above equations and substituting Eqs.
�1�–�5� we get

Ċx = − �y
1 cos � tan2 � Ḟx = �x

1 sin ��1 − � cot ��

Ċy = − �y
1 sin � tan2 � Ḟy = − �x

1 cos ��1 − � cot �� �19�
From Eq. �19� we deduce

dCy/dCx = tan � for � � 0 and �y
1 � 0

dFy/dFx = − cot � for � � 0 and �x
1 � 0 �20�

We note from Figs. 2 and 3 that the instantaneous slope of CF is
tan �. This motivates the following remark.

Remark 3. Under simultaneous application of actuating inputs
�x

1 and �y
1, the instantaneous motion of C and F are tangential and

perpendicular, respectively, to line CF.
Remark 3 outlines the qualitative nature of the trajectory of F,

Fig. 3 An arbitrary configuration of the sphere

Fig. 4 The C-C� pair for the Dual-Point Theorem

Fig. 5 RS and DPT maneuvers
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given a trajectory of C. It indicates that if C is constrained to
follow a desired curve, F will traverse a path such that for any
instantaneous position of C, CF is tangential to the curve at that
point. This is illustrated in Fig. 6 where C is constrained to follow
the curve M. As C moves to C� or C�, F moves to F� or F�,
respectively, such that C�F� or C�F� are tangential to the curve M
at C� or C�, respectively. Using Eqs. �1�–�5� and �18�, we can now
show

	Cx = − cos � tan2 �	�

	Cy = − sin � tan2 �	� �21�
which leads to

�	C� = �	Cx
2 + 	Cy

2�1/2 = tan2 ��	�� �22�

Also, from Eq. �9� we obtain

CF = �tan � − �� Þ �	CF� = tan2 ��	�� �23�

Equations �22� and �23� effectively imply that for an infinitesimal
distance 	LC traversed by C along its trajectory

�	CF� = 	LC �24�

Remark 3 and Eq. �24� together lead to the interesting geomet-
ric result that the distance traversed by C along its constrained
trajectory M equals the change in length of CF. The result can be
visualized with CF as a taut rope wrapping or unwrapping on a
two-dimensional curve M. During wrapping or unwrapping, the
rope always remains tangential to the curve, the point of contact
being C and the other end being F as illustrated in Fig. 6. The
action of wrapping is illustrated by the transition of C and F to C�
and F�, respectively, where distance C�F�CF. Similarly, un-
wrapping is illustrated by the transition to C� and F�, where dis-
tance C�F��CF. The observations made above immediately im-
ply that the trajectories of C and F form a Evolute-Involute pair.
The trajectory of F is an involute of the trajectory of C, which is
the evolute. We summarize our observations in Remark 4 below.

Remark 4. If the point C is constrained to traverse a prescribed
path by the inputs �x

1 and �y
1, the point F moves such that CF is

tangential to the trajectory of C and CF “wraps” or “unwraps” on
the curve followed by C. The trajectories of the points C and F
form an Evolute-Involute pair.

The evolute and involute trajectories of points C and F provide
a fundamentally new description of the motion of rolling spheres.
This description is a direct manifestation of our specific selection
of Euler angle coordinates and choice of angular velocities of the
sphere in the rotating coordinate frame. In the next section we
utilize the evolute-involute geometric description to pose the re-
configuration problem as a problem in planar geometry.

3.2 Geometry Based Problem Definition. For partial recon-
figuration of the sphere, C and F must simultaneously converge to
the origin—this follows from Remark 1. For a given trajectory of
C, we infer from Sec. 3.1 that, to converge F simultaneously, the

length of the trajectory of C should be equal to the initial length of
CF. This is illustrated in Fig. 7�a�, where the length of the path
M1 equals CF and hence C and F simultaneously converge to the
origin. It may be argued that this approach is not applicable when
CF�CO. However, this is not true as illustrated in Fig. 7�b�.
Here, C first follows a path M2a that unwraps CF so that C1F1
�CF. The subsequent path M2b then wraps CF to converge both
C and F simultaneously to the origin. Note that C1F1 is tangential
to both the curves M2a and M2b at the point C1. This is in accor-
dance with the characteristics of the motion of C and F, estab-
lished in Remark 4. We shall now classify the trajectories of C,
i.e. the evolutes, into two different categories

DEFINITION 4. A “wrapping” evolute is one where the length of
CF decreases as C traverses the trajectory.

Some examples of wrapping trajectories are M1 and M2b given
in Figs. 7�a� and 7�b�, respectively. Any arbitrary point on a wrap-
ping trajectory satisfies the condition

ût ·
CF�

�CF��
= + 1

where ût is the unit tangent vector to the evolute.
DEFINITION 5. An “unwrapping” evolute is one where the

length of CF increases as C traverses the trajectory.
An example of an unwrapping trajectory is M2a in Fig. 7�b�. An

arbitrary point on an unwrapping trajectory satisfies the condition

ût ·
CF�

�CF��
= − 1

Remark 5. For partial reconfiguration, the trajectory of C must
consist of either a single wrapping evolute, as in Fig. 7�a�, or a
sequence of alternate unwrapping and wrapping evolutes, such as
in Fig. 7�b�. Furthermore, the wrapping and unwrapping evolutes
should be designed such that



i=1

n

L�Cwi� − 

j=0

m

L�Cuj� = CF�0� �25�

where CF�0� is the initial length of CF, Cwi and Cuj are the ith and
jth wrapping and unwrapping evolutes, respectively, and L�Cwi�
and L�Cuj� represent their lengths, respectively.

The existence of multiple solution trajectories is intuitive and is
captured effectively in Remark 5 by the flexibility of the number
and type of wrapping and unwrapping evolutes allowed for partial

Fig. 6 Motion of C and F due to �x
1 and �y

1

Fig. 7 Wrapping and unwrapping trajectories of the point C
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reconfiguration. Additionally Eq. �25� represents a fundamental
constraint for partial reconfiguration of the rolling sphere in planar
geometry. The above condition can also be written as

�
M
�ût ·

CF�

�CF��
ds = CF�0� �26�

where ds= �dxî+dy ĵ�, and M is the evolute and the path of inte-
gration. The flexibility in designing the evolute-involute pair
while satisfying Eqs. �25� or �26� gives us the added freedom of
posing a variety of optimization problems. For instance, we can
define the partial reconfiguration problem as an isoperimetric
problem �7�, where the objective is to minimize the path length

J =�
M

ds �27�

subject to the integral constraint in Eq. �26�. From Eq. �7� we
know that complete reconfiguration additionally requires conver-
gence of � to zero. This requires the following integral condition
to be satisfied:

�
M

� ��

�r
	ds = − �0 �28�

where �0 is the initial value of �. Eq. �26� alone, and together
with Eq. �28�, define the integral constraints for the isoperimetric
problems for partial and complete reconfiguration, respectively.
We do not solve the isoperimetric problem in this paper, instead
we propose a class of solution trajectories that satisfy the integral
constraints in Eqs. �26� and �28�.

4 Partial Reconfiguration
In search of a class of solution trajectories for the problem

posed in Sec. 3.2, we refer to the Sweep-Tuck algorithm in Sec. 2.
With this algorithm, the sphere is reconfigured by a sequence of
alternate circular arc and linear segments �6�. We will now show
that under limiting conditions, the Sweep-Tuck algorithm yields a
smooth trajectory of the sphere. Subsequently, we will establish
that such a trajectory can be a solution for the problem posed by
Eqs. �26� and �28�.

4.1 Sweep-Tuck Algorithm With Smooth Motion. Consider
the distance traversed by C during a DPT maneuver, as given in
Eq. �17�. For partial reconfiguration, we know that 
 must satisfy
Eq. �13�. As 
 approaches cos−1�1/��, we have

lim

→cos−1�1/��

CC� = lim

→cos−1�1/��

2�CO�� cos 
 − 1�
��2 − 1�

= 0 �29�

Also, from Eq. �15� we conclude that

lim

→cos−1�1/��


� = 
 �30�

From Definitions 1 and 2, we deduce that DPT and RS maneuvers
become infinitesimally small and conclude that the points C and
F, and hence the sphere, follow a smooth trajectory.

To corroborate the conclusion drawn above, we simulate the
Sweep-Tuck algorithm for a general case and a case where

→cos−1�1/��. The simulation results are shown in Figs. 8 and 9,
respectively. Both simulations were performed with identical ini-
tial configuration of the sphere, given as follows:

„x y � � �… = „7.0 1.0 1.4 0.5 2.5… �31�
where the units are in meters and radians. The initial condition
results in �=1.684, and the range of 
 in Eq. �13� to be 0�


max=cos−1�1/1.684�=0.935 rad. For the simulation in Fig. 8,

 is chosen at 50% of 
max �
1=0.47 rad�, whereas, the choice of

 is at 95% of 
max �
2=0.89 rad� for the simulation in Fig. 9. In
Figs. 8�a� and 9�a� the motion of F to F1 is due to the PS and the

first RS maneuver. The points F1 mark the start of the first DPT
maneuver. These points are shown by instances t1 and t2 in Figs.
8�c� and 9�c�, respectively. Beyond these time instants C com-
mences motion and � starts decreasing due to the DPT maneuvers.
The DPT maneuvers in Fig. 8�a� cause significant motion of the
sphere but cause infinitesimal motion of the sphere in Fig. 9�a�.
This is evident in the motion of C which translates along the line

Fig. 8 Reconfiguration with �<cos−1
„1/�…

Fig. 9 Reconfiguration with �Écos−1
„1/�…
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segments in Fig. 8�a�, whereas in Fig. 9�a� it follows an almost
smooth curve that is tangential to CF, thereby confirming Remark
4. It is clear from Fig. 8�b� and Fig. 9�b� that as 
 approaches
cos−1�1/��, the trajectory of C and that of the sphere approach
smooth curves. Also, � decreases along a smooth curve in Fig.
9�c� whereas it decreases in alternate time intervals in Fig. 8�c�.

4.2 Motion Along a Logarithmic Spiral. In a Sweep-Tuck
sequence, both CF and CO decrease in geometric progression �6�
at the end of every RS-DPT pair and finally converge to zero. As

 approaches cos−1�1/��, the trajectory of C approaches a smooth
curve with both CF and CO decreasing continuously to zero, as
illustrated in Fig. 9�a�. Since CF decreases, this smooth trajectory
of C is a wrapping evolute curve according to Definition 4. Also,
since Eq. �30� is satisfied, we deduce the following:

Remark 6. If the initial configuration of the sphere satisfies �
� �1,��, then, as 
 approaches the limiting value of cos−1�1/��,
the trajectory of the C generated by the Sweep-Tuck algorithm
approaches a smooth wrapping evolute curve. Moreover, the tan-
gent at any point on this curve makes a constant angle 
 with the

radius vector OC� . Such a curve is the well known logarithmic
spiral. Since any involute of a logarithmic spiral is also a logarith-
mic spiral �8�, the trajectory of F also approaches a logarithmic
spiral motion.

Consider a logarithmic spiral trajectory of the point C as shown
in Fig. 10. The angle �OC�F�=
 is constant for any location C
along its path and r represents the distance OC� which decreases
with an increase in � in this case. The spiral starts at �=�0 where
r=r0=CO. The mathematical expression of the logarithmic spiral
can be derived easily from its definition, as

r = �r0e−��−�0�cot 
, �0 � �  � for counter clockwise spiral

r0e+��−�0�cot 
, − �  � � �0 for clockwise spiral


�32�

From Remark 6 it is evident that a logarithmic spiral is a potential
solution to the geometric reconfiguration problem posed in Eq.
�26�. We will now establish that in the limiting case of 

=cos−1�1/��, the length condition in Eq. �25� is satisfied. We con-
sider a counterclockwise logarithmic spiral given in Eq. �32�, the
length of which can be computed using the expression

LC =�
0

��r2 + � dr

d�
	2

d� �33�

where LC is the length of the logarithmic spiral. Upon simplifica-
tion, Eq. �33� yields

LC =
r0

cos �
=

CO

cos �
= �CO = CF �34�

The same result is obtained upon considering a clockwise loga-
rithmic spiral. This confirms that the logarithmic spiral satisfies
Eq. �25� when 
=cos−1�1/�� and is a solution trajectory of C for
partial reconfiguration in the sense of Eq. �12�. The choice of
logarithmic spiral trajectory for the point C, the mathematical
form in Eq. �32�, and from the result above, we infer the following

Remark 7. A logarithmic spiral trajectory of C, converging to
the origin, leads to exponential convergence of CO and CF to
zero.

4.3 Partial Reconfiguration Using Logarithmic Spiral Mo-
tion of C. We concluded in Sec. 4.2 that the sphere can be par-
tially reconfigured using a logarithmic spiral if the sphere configu-
ration satisfies �� �1,�� and �OCF=
=cos−1�1/��. Consider
the second condition first

cos 
 = �1/�� Þ cos 
 =
CO

CF
Þ FO � CO �35�

An interesting observation here is that if FO is perpendicular to
CO, then not only do we satisfy the second condition, but also the
first condition. This is because

FO � CO Þ CF � CO Þ � � �1,�� �36�

The result above implies that for a given point F defined by the
initial conditions of the sphere, the point C should lie on a straight
line perpendicular to FO and passing through O as shown in Fig.
11. Given F, the straight line S is the locus of the point C such that
FO�CO and cos 
=1/�. Therefore, for a given location of F, S
is effectively the locus of the point C that allows the use of loga-
rithmic spiral motion of C for partial reconfiguration.

We now devise a simple three step algorithm for achieving
partial reconfiguration of the sphere from an arbitrary initial con-
figuration. The three step algorithm is stated with the help of the
next remark.

Remark 8. The rolling sphere can be partially reconfigured by
the following three steps:

�1� Apply actuation �A� to make �=0, i.e., make C and F co-
incident.

Fig. 10 A counterclockwise logarithmic spiral motion of C

Fig. 11 Locus of C that allows partial reconfiguration
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�2� Apply actuation �A� to move C to any point on the straight
line that is perpendicular to FO and passing through O.

�3� Use logarithmic spiral motion of C with CF as the tangent
to achieve partial reconfiguration.

The flexibility of choosing any point C along the line S will be
utilized in the next section to achieve complete reconfiguration.
We complete this section by deriving the expressions for the ac-
tuating inputs �x

1 and �y
1 that generate a logarithmic spiral motion

of C. Differentiating the expression for x in Eq. �18� with respect
to time, we have

ẋ = Ċx + sec2 � cos ��̇ − tan � sin ��̇ �37�
Considering a counterclockwise logarithmic spiral, from Fig. 10,

Cx and Ċx can be expressed as

Cx = r cos � Ċx = − COe−��−�0�cot 
�cot 
 cos � + sin ��
�38�

where the expression for r is given in Eq. �32� and CO is the
initial distance of C from the origin. Here we assume �̇=1��
= t+�0 without any loss of generality. To obtain the expressions
for �x

1 and �y
1 we note from Fig. 10, that for a counterclockwise

logarithmic spiral

� = � − �
 − �� Þ �̇ = �̇ = 1 �39�
Substituting Eqs. �1�, �3�, �4�, and �38� into Eq. �37� and using Eq.
�39�, we obtain the following expressions for �y

1 and �x
1

�y
1 =

− CO

tan2 � sin 

e−��−�0�cot 
, �x

1 = − tan � �40�

Similar expressions can be deduced for a clockwise logarithmic
spiral. Thus, the actuating inputs �x

1 and �y
1 that specifically gen-

erate a logarithmic spiral motion of C are smooth functions of
time and the states of the system.

5 Complete Reconfiguration
From Fig. 11 it is evident that different choice of 
 in the

second step of Remark 8 can result in different C along the locus
S. When 
=� /2, C coincides with O, and as 
 reduces to zero C
moves farther away from O. We now show that the different loga-
rithmic spirals generated due to the different end points C result in
different 	�. Consider a counterclockwise logarithmic spiral
given by Eq. �32�. From Eqs. �33�, �23�, and �24�, and Remark 5,
we write

	L =�r2 + � dr

d�
	2

	� = �	CF� = − tan2 �	� �41�

Rewriting Eq. �41� as

r0 csc 
e−��−�0�cot 
d� = − tan2 �d� �42�
and integrating both sides of Eq. �42�, we deduce the following:

e−��−�0�cot 
 = 1 −
cos 


r0
��tan �0 − �0� − �tan � − ��� �43�

Combining Eqs. �42� and �43� we have

d� = −
tan2 �

r0 csc 
 − cot 
��tan �0 − �0� − �tan � − ���
d� �44�

Also, from Eqs. �10�, �39�, and �44�, we deduce the following:

d� = d� Þ d� = d��1 − sec �� Þ d� = tan 

tan2 ��sec � − 1�

�tan � − ��
d�

�45�

Thus, the total change in � due a counter clockwise logarithmic
spiral motion of C can be given by the following expression

	� = − tan 
�
0

�0 tan2 ��sec � − 1�
�tan � − ��

d� �46�

where, 
 is the constant angle �OCF and �0 is the value of � at
the beginning of the logarithmic spiral motion of C. Consider the
actuation �A� in second step of the algorithm presented in Remark
8 in Sec. 4.3. Using Fig. 11, 
 and �0 can be related by the
expression

OF

sin 

= CF = tan �0 − �0 �47�

Clearly, different choices of 
 will result in different values of �0
in Eq. �47�. As 	� is a function of �0, Eq. �46�, this in turn will
yield different values of 	�. This is the key to complete recon-
figuration of the sphere. From Fig. 11 clearly 0
�� /2. Also,
from Eq. �47� we have

0  
 � �/2 Þ �/2 � �0 � �̄0 " OF � 0 �48�

where ��OF / sin 
��
=�/2=OF=tan �̄0− �̄0. Note that, from Fig. 11
and Eq. �47�, Eq. �46� can be rewritten as

	� = −
OF

��tan �0 − �0�2 − OF2�
0

�0 tan2 ��sec � − 1�
�tan � − ��

d� �49�

From the expression of 	� in Eqs. �49� and �46�, and from Eq.
�48�, one can deduce the following limits on 	�

lim�0→�/2 	� = − OF Þ lim
→0 	� = − OF

lim�0→�̄0
	� = − � Þ lim
→�/2 	� = − � �50�

It can be verified that the expression of 	� in Eq. �49� is mono-
tonic in �0. This leads to the following range of 	�;

0  
 � �/2 Þ �− OF � 	� � − �: counterclockwise logarithmic spiral

OF � 	�  �: clockwise logarithmic spiral
 �51�

In Remark 8 note that � changes only during the logarithmic
spiral motion in the third step and remains invariant during the
first and second step of the partial reconfiguration algorithm. If �0
is the initial value of �, then for complete reconfiguration,

	� = − �0 �52�

Eq. �51� apparently puts a restriction based on the distance OF by
imposing −OF�	��OF to be an unachievable range of 	�.
However, we can consider an equivalent �0

�0eq = �0 ± 2n� �53�

where n=1,2 , . . ., such that the effective 	�, 	�eff, given by

	�eff = − �0eq �54�

satisfies Eq. �51�. This implies that any desired 	� or its equiva-
lent can be achieved, by appropriately choosing a point on the line
S. Thus, while partial reconfiguration of the sphere can be
achieved by following a logarithmic spiral trajectory of C starting
from any point on the locus S as shown in Fig. 11, complete
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reconfiguration in the sense of Eq. �7� can be achieved only from
specific points on S. These points are such that the corresponding
effective 	� satisfies the relation

	�eff = �− �0eq: 	� � �− OF,OF�
− �0: 	� � �− �,− OF� � �OF,��  �55�

We now modify our algorithm in Remark 8 to incorporate com-
plete reconfiguration of the sphere as follows:

Remark 9. The rolling sphere can be completely reconfigured
by applying the following three step algorithm:

�1� Apply actuation �A� to make �=0, i.e., make C and F co-
incident.

�2� Apply actuation �A� to move C to a point on the straight
line S where 
= �OCF is such that 	�eff satisfies Eq. �55�.

�3� Use logarithmic spiral motion of C with CF as the tangent
to achieve complete reconfiguration.

We have defined the line S to be perpendicular to OF passing
through the origin O. Consider the case when initial configuration
of the algorithm makes F and O coincident. Then, the line OF
degenerates to the origin and the line S is undefined. Although this
is a special case of the algorithm, it can be handled easily. Con-
sider first the case when F coincides with the origin but C does
not. In this case we first apply an actuation �B� that causes O, C,
and F to lie on a straight line and in that order. Subsequently, the
complete reconfiguration algorithm in Remark 9 can be applied.
Next consider the case when both C and F coincide with O. Then
we first apply an actuation �A� to move C away from the origin.
The rest follow exactly the same steps as the first case.

6 Simulations
In this section we show simulation results of the complete re-

configuration algorithm presented in Remark 9. The initial condi-
tions of the sphere for this simulation are as follows:

�x y � � �� � �5 1.5 1.3 − �/2 − 2.5� �56�
where the units are in meters and radians. The initial conditions
yield OF=5.5036 m, which implies that the minimum �	��
achievable is 5.5036 rad, whereas the necessary 	�=2.5 rad.
Hence we consider an effective 	� as follows:

�	�eff� = �2.5 + 2m�� � 5.5036 rad, where m = ± 1, ± 2, . . .

�57�

We choose m=1 which yields 	�=8.7832 rad and an equivalent
�0eq

=−8.7832 rad. The simulation results are given in Fig. 12.

Figure 12�a� illustrates the C and F trajectories. The first step of
the complete reconfiguration algorithm, Remark 9, where actua-
tion �A� is applied, causes motion of C to C1 which is coincident
with F. In Fig. 12�c� this corresponds to the linear decrease of �
from 1.3 rad to zero at t1. This is followed by the second step
where actuation �A� takes C to C2. In Fig. 12�c� this refers to the
linear increase of � from zero to 1.47 rad at t2. The equivalent �
remains constant at −8.7832 rad from t=0 to t= t2. The point C2 is
such that �C2OF=� /2 and this allows partial reconfiguration by
a subsequent logarithmic spiral motion of C2 to the origin. Also,
with this choice of C2, 
= �OC2F=0.7019 rad and the subse-
quent logarithmic spiral will cause 	�=8.7832 rad and thereby
guarantee complete reconfiguration by additionally converging �
to the origin. These initial maneuvers results in �=1.31 �the algo-
rithm guarantees that � will necessarily be greater than 1�. The
subsequent logarithmic spiral motion converges C2 and F simul-
taneously to the origin. The trajectories C2O and FO form an
evolute-involute pair. The resulting convergence of the sphere-

center to the origin is shown in Fig. 12�b�. The convergence of �
and � to the origin are illustrated in Figs. 12�c� and 12�d�.

7 Conclusion
In this paper we recast the classical problem of reconfiguration

of a rolling sphere to a problem in planar geometry. We show that
the rolling motion of a sphere is characterized by wrapping and
unwrapping of a taut rope on a planar curve. The problem of
reconfiguration therefore translates to that of designing an
evolute-involute pair that originate at the initial configuration of
the sphere and terminate at the desired configuration, while satis-
fying integral constraints. This geometric problem can be posed as
an isoperimetric optimization problem, but rather than solving this
problem directly, we obtain a class of solution trajectories where
the evolute-involute pair are logarithmic spirals. It is shown that
two preliminary maneuvers followed by a maneuver generated by
the logarithmic spirals result in complete reconfiguration, and
with exponential convergence of the configuration variables. We
provide numerical simulations to illustrate the reconfiguration al-
gorithm.
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Ultrasonic Field Modeling in
Multilayered Fluid Structures
Using the Distributed Point
Source Method Technique
In the field of nondestructive evaluation (NDE), the newly developed distributed point
source method (DPSM) is gradually gaining popularity. DPSM is a semi-analytical tech-
nique used to calculate the ultrasonic field (pressure and velocity fields) generated by
ultrasonic transducers. This technique is extended in this paper to model the ultrasonic
field generated in multilayered nonhomogeneous fluid systems when the ultrasonic trans-
ducers are placed on both sides of the layered fluid structure. Two different cases have
been analyzed. In the first case, three layers of nonhomogeneous fluids constitute the
problem geometry; the higher density fluid is sandwiched between two identical fluid
half-spaces. In the second case, four layers of nonhomogeneous fluids have been consid-
ered with the fluid density monotonically increasing from the bottom to the top layer. In
both cases, analyses have been carried out for two different frequencies of excitation with
various orientations of the transducers. As expected, the results show that the ultrasonic
field is very sensitive to the fluid properties, the orientation of the fluid layers, and the
frequency of excitation. The interaction effect between the transducers is also visible in
the computed results. In the pictorial view of the resulting ultrasonic field, the interface
between two fluid layers can easily be seen. �DOI: 10.1115/1.2164516�

1 Introduction
Ultrasonic nondestructive evaluation �NDE� generally has two

objectives: to detect defects in structures and to determine the
material properties of the structure, without damaging it. Ultra-
sonic transducers are commonly used to generate ultrasonic waves
used in NDE experiments. Transducers are used both as transmit-
ters and receivers. Multilayered fluid systems excited by multiple
transducers are modeled in this paper. Multilayered fluid structure
is not that uncommon in nature. For example, in the early stage of
pregnancy, in the human female body the embryo grows in lay-
ered fluid surroundings. The plasma of any cell, suspended in a
fluid inside or outside of an animal body, is also an example of a
layered fluid system. Human eye lenses also behave almost like
layered fluid structures. Elastic properties of biological materials
are needed for understanding their interaction with implant mate-
rials. Layers of crude oil in sea water, as seen after an oil spill in
the ocean, are another example of layered fluid structure.

Ultrasonic nondestructive testing can be used to find the acous-
tical properties and thickness of different fluid layers in a multi-
layered fluid structure. With these applications in mind, an effi-
cient semi-analytical tool has been developed in this paper to
model the ultrasonic field in multilayered fluid structures. The
method is based on the DPSM �distributed point source method�
technique originally developed to model ultrasonic �or eddy cur-
rent� fields, i.e., pressure and velocity fields �or magnetic fields�
generated by ultrasonic �or eddy current� transducers. DPSM tech-
nique for ultrasonic field modeling was first developed by Placko
and Kundu �1�. They used this technique to model ultrasonic fields

in a homogeneous fluid medium, and then it was extended to
include nonhomogeneous fluids with only one interface �2�. The
technique is then extended by Lee et al. �3� to the inhomogeneous
medium composed of one fluid half-space and one solid half-
space following the Rayleigh-Sommerfeld theory. Lee et al. con-
sidered only 2D �two-dimensional� problem geometry. The inter-
action between two transducers, for different transducer
arrangements and source strengths, placed in a homogeneous fluid
has been studied by Ahmad et al. �4�. The scattered ultrasonic field
generated by a solid scatterer of finite dimension placed in a ho-
mogeneous fluid has also been modeled by the DPSM technique
�5�. Ahmad et al. �6� recently extended this technique to study the
phased-array ultrasonic transducers in a homogeneous fluid. How-
ever, the ultrasonic field generated in a multilayered fluid system
by multiple ultrasonic transducers of finite dimension has not been
studied yet. In this paper, the multilayered fluid system is mod-
eled. To study the interaction effect, we have considered two
transducers on opposite sides of a multilayered fluid structure.
When only one transducer is active, the second transducer acts as
a scatterer. When both transducers are active they work as ultra-
sonic signal generators as well as scatterers. The scattering phe-
nomenon is also known as the interaction effect between the two
transducers. In our approach two transducers and various inter-
faces have been modeled by properly considering the interaction
effect. In other words, the total field presented here is not simply
the superposition of the ultrasonic fields generated by individual
transducers working alone in absence of the other transducers.

2 Theory

2.1 Distributed Point Source Method (DPSM). The basic
principle of distributed point source method for the modeling of
ultrasonic and magnetic transducers has been described in detail
in Refs. �7,8�. In this method arrays of point sources are distrib-
uted on the surface of the transducer and along interfaces. These
surfaces act as wave-generating surfaces. Each point source is
assumed to generate an ultrasonic field and the ultrasonic field at
any point at a distance from the surface of the transducer and the

1Author to whom correspondence should be addressed.
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JOURNAL OF APPLIED MECHANICS. Manuscript received February 23, 2005; final manu-
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Journal of Applied Mechanics, Department of Mechanical and Environmental Engi-
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and will be accepted until four months after final publication in the paper itself in the
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interface is obtained by superposition of the contributions of all
point sources distributed along appropriate surfaces as shown in
Fig. 1�a�. More precisely, as discussed in Ref. �7�, each point
source is placed inside a small sphere and the spheres are placed
just behind the active elastic wave-generating surface at a distance
rs from the surface; the apex of the spheres touches the transducer
surface or interface as illustrated in Fig. 1�b�. Restrictions on rs
have been discussed in Ref. �7�. Reliability and accuracy of
DPSM generated results for some simpler cases for which other
forms of solution are available have been already presented in
Ref. �6� and are not repeated here.

2.2 Computation of Ultrasonic Field in a Homogeneous
Fluid.

2.2.1 Computation of Velocity and Pressure Fields in a
Fluid Generated by a Set of Point Sources. Ultrasonic transduc-
ers of finite dimension are generally used to generate the ultra-
sonic field in the fluid. In the DPSM technique the point sources
are distributed near the transducer surface �1�. The combined ef-
fect of a large number of point sources distributed over a plane
surface is the vibration of the surface points in a direction normal
to the surface. Following the surface integral technique the pres-
sure field at point x �see Fig. 1�a�� in front of the transducer can
be obtained by integrating the spherical waves �1,9�

p�x� =�
S

B ·
eikfr

4�r
dS �1�

where p is the pressure and B represents the source velocity.
Therefore, B is a measure of the strength of the point sources, dS
represents the elementary area on the surface of the source, kf is
the wave number in the fluid for a particular frequency of excita-
tion, and r is the radial distance of the point x from the source.
This integral equation can also be written in the summation form

p�x� = �
m=1

N � B

4�
�Sm� exp�ikfrm�

rm
= �

m=1

N

Am

exp�ikfrm�
rm

�2�

Let the source strength of the mth point source be Am, and rm be
the distance of the observation point or target point x from the mth

point source. Therefore, pressure at any point at a distance rm
from the mth point source with source strength Am can be written
as

pm�r� = Am

exp�ikfrm�
rm

�3�

For N number of point sources distributed on a surface, the pres-
sure at the target point is given by

p�x� = �
m=1

N

pm�rm� = �
m=1

N

Am

exp�ikfrm�
rm

�4�

From the pressure velocity relation �7�, the velocity in the radial
direction at a distance r from the mth point source can be written
as

vm�r� =
Am

i��

�

�r
� exp�ikfr�

r
� =

Am

i��
� ikf exp�ikfr�

r
−

exp�ikfr�
r2 �

�vm�r� =
Am

i��

exp�ikfr�
r

�ikf −
1

r
� �5�

The three components of velocity are

v1m�r� =
Am

i��

�

�x1
� exp�ikfr�

r
� =

Am

i��

x1 exp�ikfr�
r2 �ikf −

1

r
� �6�

v2m�r� =
Am

i��

�

�x2
� exp�ikfr�

r
� =

Am

i��

x2 exp�ikfr�
r2 �ikf −

1

r
� �7�

v3m�r� =
Am

i��

�

�x3
� exp�ikfr�

r
� =

Am

i��

x3 exp�ikfr�
r2 �ikf −

1

r
� �8�

When the contributions of all N sources are added, the total ve-
locity in x1, x2, and x3 directions at point x can be written as

v1�x� = �
m=1

N

v1m�rm� = �
m=1

N
Am

i��

x1m exp�ikfrm�
rm

2 �ikf −
1

rm
� �9�

Fig. 1 „a… Position of an observation point „target point… and its distance from the mth point
source on the transducer surface. „b… Side view of a transducer and actual positions of the
point sources.
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v2�x� = �
m=1

N

v2m�rm� = �
m=1

N
Am

i��

x2m exp�ikfrm�
rm

2 �ikf −
1

rm
� �10�

v3�x� = �
m=1

N

v3m�rm� = �
m=1

N
Am

i��

x3m exp�ikfrm�
rm

2 �ikf −
1

rm
� �11�

where xim is the shortest distance along the xi direction between
the mth point source and the target point, as shown in Fig. 1�a�. If
the transducer surface velocity in the x3 direction is given by v0,
then for all values of x on the transducer surface, the velocity
should be equal to v0. Therefore

v3�x� = �
m=1

N
Am

i��

x3m exp�ikfrm�
rm

2 �ikf −
1

rm
� = v0 �12�

If the transducer face is inclined at an angle �, measured from
x3-axis, and is rotated about the x2-axis �see Fig. 2�, then the
velocity of the transducer face can be expressed as

v0 = v1�x�sin � + v3�x�cos �

= �
m=1

N
Am

i��
�ikf −

1

rm
�

�� x1m exp�ikfrm�
rm

2 sin � +
x3m exp�ikfrm�

rm
2 cos �� �13�

2.2.2 Matrix Formulation. Velocity of the M target points
distributed on the transducer face due to point sources distributed
just behind the transducer surface at a distance rs can be written in
the matrix form as

VS = MSSAS �14�

where VS is the �M �1� vector of the velocity components, per-
pendicular to the transducer surface. If the velocity of the trans-
ducer face is given by v0, then VS can be written as

	VS
T = �v0
1 v0

2 v0
3
¯ ¯ ¯ ¯ ¯ v0

M−1 v0
M�T �15�

where v0
n is the velocity of the nth target point. If AS is the

�N�1� vector of the source strengths, then

	AS
T = �A1 A2 A3 A4 A5 A6 ¯ AN−2 AN−1 AN�T �16�
From the earlier discussion, we know that each point source is
placed inside a sphere; hence, the number of apex points of the
spheres will be the same as the number of point sources. When the
target points are placed at the apex of the spheres of the point
sources, then M is equal to N. Therefore, when the target points
are located at the apex of the spheres of the point sources, the
square matrix MSS can be written as

MSS = �
f�xt1

1 ,r1
1� f�xt1

2 ,r1
2� f�xt1

3 ,r2
3� f�xt1

4 ,r1
4� ¯ ¯ f�xt1

N−1,r1
N−1� f�xt1

N ,r1
N�

f�xt2
1 ,r2

1� f�xt2
2 ,r2

2� f�xt2
3 ,r2

3� f�xt2
4 ,r2

4� ¯ ¯ f�xt2
N−1,r2

N−1� f�xt2
N ,r2

N�
f�xt3

1 ,r3
1� f�xt3

2 ,r3
2� f�xt3

3 ,r3
3� f�xt3

4 ,r3
4� ¯ ¯ f�xt3

N−1,r3
N−1� f�xt3

N ,r3
N�

f�xt4
1 ,r4

1� f�xt4
2 ,r4

2� f�xt4
3 ,r4

3� f�xt4
4 ,r4

4� ¯ ¯ f�xt4
N−1,r4

N−1� f�xt4
N ,r4

N�
¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

f�xtN
1 ,rN

1 � f�xtN
2 ,rN

2 � f�xtN
3 ,rN

3 � f�xtN
4 ,rN

4 � ¯ ¯ f�xtN
N−1,rN

N−1� f�xtN
N ,rN

N�

�
N�N

�17�

where

f�xtn
m,rn

m� =
xtn

m exp�ikfrn
m�

i���rn
m�2 �ikf −

1

rn
m�

=
exp�ikfrn

m�
i���rn

m�2 �ikf −
1

rn
m��x3n

m cos � + x1n
m sin �� �18�

and rn
m is the distance between the mth point source and the nth

target point.
For a general set of target points located on any surface, the

velocity due to the transducer sources can be written as

VT = MTSAS �19�

where VT, the �M �1� velocity vector, contains the normal veloc-
ity components of the target points distributed on the surface. The
matrix MTS has elements that are similar to those of MSS, with
different xtn

m values and the size of the matrix is �M �N�, where M
is the number of target points and N is the number of source
points. Following the same concept, the pressure at any M number
of target points due to N number of source points can be written as

PRT = QTSAS �20�

where PR� T is the �M �1� vector of pressure values at M target
points, and QTS is an �M �N� matrix given below

Fig. 2 Rotation of the transducer with respect to x3-axis and
velocity of the nth observation point adjacent to the transducer
face
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QTS = �
exp�ikfr1

1�
r1

1

exp�ikfr1
2�

r1
2

exp�ikfr1
3�

r1
3 ¯ ¯

exp�ikfr1
M�

r1
M

exp�ikfr2
1�

r2
1

exp�ikfr2
2�

r2
2

exp�ikfr2
3�

r2
3 ¯ ¯

exp�ikfr2
M�

r2
M

exp�ikfr3
1�

r3
1

exp�ikfr3
2�

r3
2

exp�ikfr3
3�

r3
3 ¯ ¯

exp�ikfr3
M�

r3
M

¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯

exp�ikfrN
1 �

rN
1

exp�ikfrN
2 �

rN
2

exp�ikfrN
3 �

rN
3 ¯ ¯

exp�ikfrN
M�

rN
M

�
N�M

�21�

When the target points are located at the apex of the spheres of the
point sources, Eq. �20� takes the form

PRS = QSSAS �22�

where QSS is an �N�N� matrix.
The definition of rn

m is identical to Eq. �18�. It is the distance
between the mth point source and the nth target point.

2.3 Computation of Ultrasonic Fields in Multilayered
Fluids.

2.3.1 Distribution of Point Sources. We are interested in
computing the ultrasonic field in multilayered fluid systems. In the
multilayered problem geometry several interfaces may be present.
When fluids with different densities and acoustic properties form a
multilayered system, the fluid density should monotonically vary
from top to bottom. If we have n number of fluids in the system,
we should have �n−1� number of interfaces. Each interface acts as
a transmitter as well as a reflector of elastic wave energy gener-
ated by the ultrasonic transducers. When the entire system is con-
sidered, several continuity conditions across the interfaces and

boundary conditions at the transducer surface are to be satisfied.
As shown in Fig. 3, a number of sources are introduced along the
transducer surfaces T and R as well as along �n−1� interfaces
I1 , I2 , . . . , In−1, for multilayered fluid geometry with n fluid layers.
AS and AR denote the source strength vectors along the transducer
surfaces T and R, respectively. Along each interface Im two sets of
source vectors are introduced. These two sets of source strength
vectors are denoted by Am �for sources located just above the mth
interface� and Am

* �for sources located just below the mth inter-
face�. The sources with source strength Am generate the ultrasonic
field in the fluid below it and the sources with source strength Am

*

generate the ultrasonic field in the fluid above it. The total ultra-
sonic field in each medium is obtained by superimposing the fields
generated by two sets of sources as listed below:

Fluid 1: Summation of fields generated by AS and A1.
Fluid 2: Summation of fields generated by A1

* and A2.
Fluid 3: Summation of fields generated by A2

* and A3.
Fluid �n−1�: Summation of fields generated by An−2

* and
An−1.Fluid n: Summation of fields generated by An−1

* and AR.

Fig. 3 Distribution of point sources in the multilayered fluid system with two trans-
ducers and n different fluids having „n−1… interfaces
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It should be mentioned here that, after independently developing
the multilayered fluid modeling technique as discussed in this pa-
per, the authors found a similar technique used in the seismologi-
cal literature for modeling multilayered dipping layers in earth
�10�. Authors in Ref. �10� used two layers of sources for modeling
each interface, as done in this paper. Wong �11� proposed to model
the displacement and stress fields by superimposing the funda-
mental solutions due to point sources that were placed slightly
behind the surface to avoid the singularity in the integral equation;
this approach was then followed by Dravinski and Mossessian
�10�. However, there are also some major differences between our
technique and the technique proposed in Refs. �10,11�. In both
those references the half-space Green’s function was taken to
model the half-space problem. Therefore, those Green’s functions
must be changed when the half-space is changed to a full space or
a quarter-space or any other geometry other than half-space. The
Green’s function used in our approach is independent of the prob-
lem geometry. In Refs. �10,11� the incident beam is assumed to be
a plane wave �i.e., a beam of infinite width�, which is not the case
for our modeling. For the seismic applications the plane-wave
assumption is reasonable; however, for the NDE applications of-
ten the striking wave is not a plane wave and the modeling should
be carried out as outlined in this paper. Finally, in Refs. �10,11�
the boundary and interface conditions were satisfied in a least-
squares sense that is not the case here, as discussed in the follow-
ing section.

2.3.2 Source Strength Determination From Boundary and
Interface Conditions. Certain boundary and interface continuity
conditions must be satisfied for this problem geometry. On the
transducer surfaces T and R, the velocity fields are specified as
VS0 and VR0, respectively. Across the n interfaces, the pressure
�PR� and the x3-direction velocity �V� must be continuous.

Since for any set of sources and target points the velocity and
pressure fields are given by V=M ·A and PR=Q ·A �Refer to
Eqs. �19� and �20��, the boundary and continuity conditions give
rise to the following equations:

MSSAS + MS1A1 = VS0

MRRAR + MR�n−1�
* An−1

* = VR0

M1SAS + M11A1 = M12A2 + M11
* A1

*

Q1SAS + Q11A1 = Q12A2 + Q11
* A1

*

M21
* A1

* + M22A2 = M22
* A2

* + M23A3

Q21
* A1

* + Q22A2 = Q22
* A2

* + Q23A3

¯

M�n−2��n−3�
* A�n−3�

* + M�n−2��n−2�A�n−2� = M�n−2��n−2�
* A�n−2�

*

+ M�n−2��n−1�An−1

Q�n−2��n−3�
* A�n−3�

* + Q�n−2��n−2�A�n−2� = Q�n−2��n−2�
* A�n−2�

*

+ Q�n−2��n−1�A�n−1�

M�n−1��n−2�
* A�n−2�

* + M�n−1��n−1�A�n−1� = M�n−1��n−1�
* A�n−1�

*

+ M�n−1�TAR

Q�n−1��n−2�
* A�n−2�

* + Q�n−1��n−1�A�n−1� = Q�n−1��n−1�
* A�n−1�

* + Q�n−1�TAR

�23�
In the matrix form, the above equations can be written as

�MAT�	�
 = 	V0
 �24�

The vectors 	�
 and 	V0
 are

	�
T = 	AS A1 A1
* A2 A2

*
¯ ¯ An−2 An−2

* An−1 An−1
* AR
T

�25�

	V0
T = 	VS0 0 0 0 ¯ ¯ 0 0 0 VR0
T �26�

Replacing �n−1� by n1, �n−2� by n2, and so on, the matrix
�MAT� can be written as

�MAT� =�
MSS MS1 0 0 0 0 0 0 ¯ 0 0 0 0 0 0

M1S M11 − M11
* − M12 0 0 0 0 ¯ 0 0 0 0 0 0

Q1S Q11 − Q11
* − Q12 0 0 0 0 ¯ 0 0 0 0 0 0

0 0 M21
* M22 − M22

* − M23 0 0 ¯ 0 0 0 0 0 0

0 0 Q21
* Q22 − Q22

* − Q23 0 0 ¯ 0 0 0 0 0 0

0 0 0 0 M32
* M33 − M33

* − M34 ¯ 0 0 0 0 0 0

0 0 0 0 Q32
* Q33 − Q33

* − Q34 ¯ 0 0 0 0 0 0

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 0 0 0 0 0 0 0 ¯ Mn2n3
* Mn2n2 − Mn2n2

* Mn2n1 0 0

0 0 0 0 0 0 0 0 ¯ Qn2n3
* Qn2n2 − Qn2n2

* Qn2n1 0 0

0 0 0 0 0 0 0 0 ¯ 0 0 Mn1n2
* Mn1n1 − Mn1n1

* Mn1T

0 0 0 0 0 0 0 0 ¯ 0 0 Qn1n2
* Qn1n1 − Qn1n1

* Qn1R

0 0 0 0 0 0 0 0 ¯ 0 0 0 0 MRn1
* MRR

�
�27�
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2.3.3 Solution. The source strength vectors of the total system
can be calculated by taking the inverse of �MAT� and multiplying
it with the velocity vector 	V0
,

	�
 = �MAT�−1	V0
 �28�
After calculating the source strengths, the pressure and velocity

�ultrasonic field� at any point of the problem geometry can be
calculated. For example, the pressure field in medium 3 can be
written as

PR�F3� = Q�F3�2A2
* + Q�F3�3A3 �29�

where F3 is a set of target points inside the fluid medium 3.
Similarly, in all n fluid layers, the pressure field can be calculated
as

PR�F1� = Q�F1�SAS + Q�F1�1A1

PR�F2� = Q�F2�1A1
* + Q�F2�2A2

¯

PR�Fn−1� = Q�Fn−1�n−2An−2
* + Q�Fn−1�n−1An−1

PR�Fn� = Q�Fn�n−1An−1
* + Q�Fn�RAR �30�

where Fi is a set of target points inside the ith fluid medium.

3 Numerical Results and Discussions
MATLAB programs have been developed to model the ultrasonic

field based on the DPSM formulation presented above. Two sepa-
rate cases have been studied. In case 1 two different fluids form a
three-layered structure as shown in Fig. 4�a�, and in case 2 four
different fluids form four layers of a second problem geometry as
shown in Fig. 4�b�. In the first case the higher density fluid has
been placed in between two identical lower density fluid half-
spaces. In the second case four layers of fluid have been arranged
such that their density monotonically increases from the bottom to
the top. For convenience from now onwards the x1 axis is called
the x axis and x3 axis is called the z axis.

Four different orientations of the two transducers have been
considered as illustrated in Fig. 5. In the first orientation, trans-
ducers are placed face to face; transducer faces are parallel to the
x axis as shown in Fig. 5�a�. In the second orientation the trans-
ducer R has been shifted horizontally and inclined at an angle �
with respect to the z axis, as shown in Fig. 5�b�. Similarly in the
third orientation the transducer T has been shifted and inclined at
an angle � with respect to the z axis as shown in Fig. 5�c�. Figure
5�d� illustrates the fourth orientation where both transducers are
inclined.

Densities and P-wave speeds of different fluids considered in
this study are given in Table 1. Two different fluid structures and
four different transducer orientations are considered to show the
interference effect of the second transducer for different orienta-
tions and to produce symmetric and nonsymmetric ultrasonic field
patterns in the fluid structure.

3.1 Ultrasonic Field Computation for Case 1. Three-
layered fluid structure water-glycerin-water �WGW� as shown in
Fig. 4�a� is studied first. This hypothetical structure is considered
to test the computer program, such as whether symmetric ultra-
sonic field is generated when the two transducers are placed sym-

Fig. 4 Multilayered fluid structures considered: „a… case 1,
water-glycerin-water; „b… case 2, acetone-benzol-water-
glycerin.

Fig. 5 Transducer orientations „a… orientation I; „b… orientation II; „c… orienta-
tion III; „d… orientation IV.

Table 1 Fluid properties

Fluids and Properties P-wave Speed �km/s� Density �gm/cc�

Acetone 1.17 0.790
EthylBenzol 1.34 0.868

Water 1.48 1.00
Glycerine 1.92 1.26
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metrically. The middle layer is 20 mm thick and the transducers
have 4 mm diameter. Figures 6 and 7 show the ultrasonic fields
generated in the WGW structure for different transducer orienta-
tions. Ultrasonic fields generated in water-glycerin-water structure
due to 1 MHz excitation have been presented in the left columns

of Figures 6 and 7 �Figs. 6�a�–6�c� and 7�a�–7�c�� and ultrasonic
fields due to 2.2 MHz excitation have been presented in right
columns �Figs. 6�d�–6�f� and 7�d�–7�f��. In Figs. 6�a� and 6�d� the
transducers R and T are placed face to face, orientation I as shown
in Fig. 5�a�, but only the transducer R is turned on, while the

Fig. 6 Ultrasonic fields for case 1. „a… Orientation I for 1 MHz transducers with only R on. „b… Orientation III for 1 MHz transducers
with only R on. „c… Orientation I for 1 MHz transducers with both T and R on. „d… Orientation I for 2.2 MHz transducers with only R
on. „e… Orientation III for 2.2 MHz transducers with only R on. „f… Orientation I for 2.2 MHz transducers with both T and R on.
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transducer T is kept off. The depth of the glycerin layer has been
taken as 20 mm for both 1- and 2.2 MHz signals. One MHz trans-
ducers are kept at 10 mm distance from the water-glycerin inter-
faces but 2.2 MHz transducers are placed at 20 mm distance from
the same interfaces. Additional distance for the 2.2 MHz transduc-

ers is necessary to make sure that the interface is not placed within
the near-field region �7� of the transducers. Therefore, the total
width �D; see Fig. 4� of the WGW structure is 40 mm for 1 MHz
transducers but D is 60 mm for the 2.2 MHz transducers. It is well
known that the pressure field generated at a point in front of a

Fig. 7 Ultrasonic fields for case 1. „a… Orientation IV for 1 MHz transducers with only R on. „b… Orientation IV for 1 MHz trans-
ducers with both T and R on. „c… Orientation II for 1 MHz transducers with both T and R on. „d… Orientation IV for 2.2 MHz
transducers with only R on. „e… Orientation IV for 2.2 MHz transducers with both T and R on. „f… Orientation II for 2.2 MHz
transducers with both T and R on.
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transducer depends on the frequency of excitation and the distance
of the point from the transducer face �7�. As frequency increases
the isobars gradually shift away from the transducer face. To gen-
erate approximately the same pressure value at the interface posi-
tion, the distance D between the transducers has been varied when
the transducer frequency is changed from 1 to 2.2 MHz.

From Figs. 6�a� and 6�d� it is clear that when transducer T is
off, this transducer works as a reflector or scatterer and the scat-
tering field is generated, near the central region of the bottom
layer. At 2.2 MHz the scattering field becomes significantly stron-
ger in comparison to that for 1 MHz transducers. Very strong
pressure field is generated in glycerin at 2.2 MHz. It can easily be

Fig. 8 Ultrasonic fields for case 2. „a… Orientation I for 1 MHz transducers with only R on. „b… Orientation I for 1 MHz transducers
with only T on. „c… Orientation I for 1 MHz transducers with both T and R on. „d… Orientation I for 2.2 MHz transducers with only R
on. „e… Orientation I for 2.2 MHz transducers with only T on. „f… Orientation I for 2.2 MHz transducers with both T and R on.
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seen that for 2.2 MHz transducers the maximum pressure in glyc-
erin is observed near the bottom of the glycerin layer, whereas for
the 1 MHz transducer it is in the top water layer. In glycerin the
alternate dips and peaks in the pressure field are due to the inter-

ference between the transmitted and the reflected fields and can be
seen at both frequencies, but are more prominent near the upper
interface at 2.2 MHz.

When the transducers are positioned as in orientation III with

Fig. 9 Ultrasonic fields for case 2. „a… Orientation IV for 1 MHz transducers with only R on. „b… Orientation IV for 1 MHz trans-
ducers with both T and R on. „c… Orientation II for 1 MHz transducers with both T and R on. „d… Orientation IV for 2.2 MHz
transducers with only R on. „e… Orientation IV for 2.2 MHz transducers with both T and R on. „f… Orientation II for 2.2 MHz
transducers with both T and R on.
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�=30 deg �see Fig. 5�c�� the generated ultrasonic fields are as
shown in Figs. 6�b� and 6�c�. Note that the scattered fields almost
disappear. However, a careful observation in a contour plot �not
presented� shows a very weak scattered field on the right side of
the bottom layer. Note that for 2.2 MHz transducers the transmit-
ted field in the bottom layer �Fig. 6�e�� is uninterrupted and much
more collimated compared to that in Fig. 6�d�. Both transducers T
and R are now turned on and placed in orientation I as shown in
Fig. 5�a�. The ultrasonic fields generated for this combination at
1 MHz and at 2.2 MHz are presented in Figs. 6�c� and 6�f�, re-
spectively. For 1 MHz excitation, the reflected and transmitted
fields make strong alternate dips and peaks in glycerin. Similar
phenomenon is also observed for 2.2 MHz transducers; the field is
more collimated for 2.2 MHz signals.

In Figs. 7�a�–7�f� the inclined incidence of the wave field has
been considered with inclination angle �=30 deg, measured from
the vertical axis. As mentioned before, the left column is for
1 MHz and the right column is for 2.2 MHz signals. Figures 7�a�
and 7�d� are generated with transducer orientation IV when only R
is on. Figures 7�b� and 7�e� are generated for the same orientation
but now both transducers are on. In Figs. 7�b� and 7�e�, the ultra-
sonic fields in glycerin form a nice pattern due to interaction be-
tween the transmitted and reflected fields. Note that this pattern is
dependent on the signal frequency. For case 1 when the transduc-
ers are oriented as in orientation II �Fig. 5�b�� with both transduc-
ers on, at 1 MHz there is a nice interaction pattern between the
transmitted fields inside glycerin. A strong interaction between
two transmitted fields is also visible for 2.2 MHz transducers, as
shown in Fig. 7�f�. The reflected field can also be seen in glycerin
due to the reflection of the transmitted beam from the bottom
interface.

3.2 Ultrasonic Field Computation for Case 2. In case 2 four
fluids have been considered and they are placed with monotoni-
cally increasing density as shown in Fig. 4�b�. Analyses have been
carried out for transducer orientation I with only R on, only T on,
and both transducers R and T on, and have been presented in Fig.
8. Ultrasonic fields generated in acetone-benzol-water-glycerin
�ABWG� structure by 1 MHz transducers have been presented in
the left column �Figs. 8�a�–8�c�� and the ultrasonic fields gener-
ated by 2.2 MHz transducers have been presented in the right
column �Figs. 8�d�–8�f��. For both frequencies the thickness of
benzol and water layers are taken as 20 mm each. For the same
reason as discussed earlier the transducers are placed 10 mm away
from the interfaces for 1 MHz transducers and 20 mm away from
the interfaces for 2.2 MHz transducers. Therefore, D �see Fig. 5�
is equal to 60 mm for 1 MHz and 80 mm for 2.2 MHz
transducers.

In Fig. 8 only the normal incidence of the wave field from the
transducers has been considered. Figures 8�a� and 8�d� show the
ultrasonic fields when transducer R is on with 1- and 2.2 MHz
signal frequency, respectively. The scattered field from the trans-
ducer T is visible near the central region of the bottom layer at
1 MHz but it is not very clear at 2.2 MHz. Relative pressure in
glycerin is much higher than that in acetone at 2.2 MHz in com-
parison to 1 MHz. When T is on and R is turned off, the scattered
field from transducer R can be clearly seen in the top layer at both
frequencies. Figures 8�c� and 8�f� have been generated when both
T and R are on. We can see that the ultrasonic field generated in
acetone is weaker compared to that in glycerin due to higher im-
pedance of glycerin. At 2.2 MHz the pressure field has several
dips and peaks in benzol and it is not that prominent at 1 MHz.
The pressure field in water is more collimated at 2.2 MHz com-
pared to that at 1 MHz.

After analyzing the normal incidence cases the transducers are
inclined as shown in orientations IV and II with the inclination
angle �=30 deg. The ultrasonic fields generated when only R is
on, at 1- and 2.2 MHz frequencies, are presented in Figs. 9�a� and
9�d�, respectively. According to Snell’s law the transmitted angle

�angle between the transmitted field and the normal to the inter-
face� in higher velocity fluid is greater than the incident angle
�angle between the incident field and the normal to the interface�
in the fluid that has lower velocity. Therefore, in Fig. 9�b� the
transmitted pressure field in benzol, which has higher wave speed
than that in acetone, has greater inclination with the normal to the
interface. This phenomenon is also visible at 2.2 MHz in Fig.
9�e�. Figures 9�c� and 9�f� show the ultrasonic fields with trans-
ducers oriented as shown in Fig. 5�b�, orientation II.

It is clear from the above results that the algorithm presented is
this paper is capable of producing ultrasonic fields in multilayered
fluid structures in the presence of multiple transducers of finite
dimensions.

4 Conclusion
In this paper the DPSM technique has been extended to model

the multilayered fluid structure to study the interaction between
the multilayered fluid structures and the bounded acoustic beams.
For two different multilayered structures and four different orien-
tations of the transducers, the numerical results have been pre-
sented to show the potential of this semi-analytical method in
analyzing the wave-propagation problems. In the pressure contour
plots presented in this paper the transmission, reflection, and dif-
ferent interactions of the ultrasonic beams in various fluids can be
visually observed. Extending this work to incorporate solid layers,
cracks, and inclusions is currently underway. Although the finite-
element-based codes such as PZFLEX �12� are capable of generat-
ing these results, the DPSM technique has a major advantage over
PZFLEX: it does not require three-dimensional discretization of the
entire space. PZFLEX software is quite expensive and users of this
software reported that “a major difficulty encountered was the
extremely high storage requirement and runtime needed” �13�.
The DPSM technique appears to be a useful alternative to the
available finite-element codes.
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The Effects of Vibrations on
Particle Motion Near a Wall in a
Semi-Infinite Fluid Cell
The effects of small vibrations on a particle-fluid system relevant to material processing
such as crystal growth in space have been investigated experimentally and theoretically.
An inviscid model for a spherical particle of radius, R0, suspended by a thin wire and
moving normal to a cell wall in a semi-infinite liquid-filled cell subjected to external
horizontal vibrations, was developed to predict the vibration-induced particle motion
under normal gravity. The wall effects were studied by varying the distance between the
equilibrium position of the particle and the nearest cell wall, H. The method of images
was used to derive the equation of motion for the particle oscillating in an inviscid fluid
normal to the nearest cell wall. The particle amplitude in a semi-infinite cell increased
linearly with the cell vibration amplitude as expected from the results for an infinite cell,
however, the particle amplitude also changed with the distance between the equilibrium
position of the particle and the nearest wall. The particle amplitude was also found to
increase or decrease depending on whether the cell vibration frequency was below or
above the resonance frequency, respectively. The theoretical predictions of the particle
amplitudes in the semi-infinite cell agreed well with the experimental data, where the
effect of the wall proximity on the particle amplitude was found to be significant for
�H /R0�2� especially near the resonance frequency. Experiments performed at high fre-
quencies well above the resonance frequency showed that the particle amplitude reaches
an asymptotic value independent of the wire length. �DOI: 10.1115/1.2165229�

1 Introduction
Microgravity environment plays an important role for material

processing in which buoyancy-induced convection process is
nearly suppressed even when there is a density variation in a fluid
system. Due to diffusion dominated environment, high quality
materials such as protein crystals may be obtained under micro-
gravity, provided the fluid system is not subjected to external ex-
citations �1�. Trolinger et al. �2� used the particle image velocim-
etry �PIV� to detect the greater effect of small vibrations �g-jitter�
aboard the Space Shuttle than expected. Recent experiments con-
ducted on protein crystal growth by Gamache et al. �3� on the
ground have shown that small vibrations can induce movements
in protein crystals which in turn cause significant fluid motion
around the growing crystal.

The objective of this paper is to better understand the vibration-
induced motion of a small particle in a fluid-particle system, in
particular the wall proximity effect on the particle motion, as il-
lustrated in Fig. 1. To this end, the motion of a solid particle
suspended in a semi-infinite fluid cell filled with an inviscid fluid
and subjected to horizontal sinusoidal vibrations, has been inves-
tigated over a wide range of vibration conditions. To evaluate the
proximity effect of a cell wall, the mean distance between the
particle and the nearest cell wall was varied and the relative mo-
tion between the particle and the fluid cell was recorded and ana-
lyzed. A theoretical model was also developed and its predictions
have been compared with the experimental data.

Previous studies on the fluid mechanics of vibrated particle-
fluid systems will be reviewed first, including the motion of a

particle subjected to a sinusoidal motion in an otherwise quiescent
fluid, particle settling in a vertically oscillating liquid, and theo-
retical analysis of particle motion in an unsteady and uniform flow
but without the wall effects.

Basset �4�, Boussinesq �5�, and Oseen �6� formulated the equa-
tion of motion, referred to as the BBO equation, and investigated
theoretically the unsteady motion of a sphere in a stagnant viscous
fluid. They eliminated the inertia terms in all their calculations.
Oseen �7� linearized the nonlinear terms up to the first order of
Reynolds number for steady flows and showed that the ratio of the
inertial to the viscous terms cannot be negligible at distances
�1/Re� as assumed by Stokes �8� for creeping flow no matter how
small the particle diameter is. Maxey and Riley �9� derived the
equation of motion for a sphere in a nonuniform creeping flow by
modifying the equation of motion proposed previously by Tchen
�10�. Unfortunately, in all the above-mentioned papers no analyti-
cal expression was derived for the instantaneous particle motion
in an unsteady fluid flow.

Lamb �11� and Milne-Thomson �12� also obtained analytically
an approximate expression for the force acting on a particle oscil-
lating in a quiescent inviscid fluid near a wall. They used a Taylor
series expansion for the ratio of particle diameter to particle-wall
distance, however, they neglected terms higher than the first order.
Eames et al. �13� studied the motion of an inviscid fluid induced
by a sphere moving away from a wall at a constant speed. For
vibrated fluid systems, Houghton �14� analyzed the nonlinear drag
�Newton’s law� on free particles in a sinusoidal velocity field lead-
ing to the Mathieu equation, where he found that stable particle
trajectories may occur in certain ranges of vibration amplitude and
frequency, however, Houghton did not include any finite cell ef-
fect in his study.

Li et al. �15� used a successive images method to determine the
velocity potential and hence the interacting force on two spheres
moving with steady velocities normal to the line joining their
centers of mass. The motion of high Reynolds number bubbles in
inhomogeneous flow has been predicted by Magnaudet et al. �16�
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but their analysis did not include any wall effect. Magnaudet �17�
recently studied the motion of a particle near a wall at a finite
Reynolds number, but their study did not incorporate any effect of
vibrations near a cell wall.

Recently, Hassan et al. �18� developed a theoretical model to
predict the vibration-induced particle motion in an infinite fluid
cell assuming an inviscid fluid and irrotational flow. Their invis-
cid, infinite cell model was able to predict well the experimental
data obtained with a solid particle attached to a wire in a large
fluid cell which was subjected to small horizontal vibrations.

As clear from the above, to the authors’ knowledge, no experi-
mental results and theoretical expressions have been reported for
the motion of a particle oscillating near a wall in a fluid cell. This
is because particles with densities different from that of the fluid
settle due to gravity and steady vibration experiments cannot be
easily performed under normal gravity.

2 Experimental Apparatus and Procedure
The experimental apparatus consisted of a test section, a PC-

controlled linear translation stage, and a video camera/recording
system as shown in Fig. 2. The test cell and the translation stage
were placed on a vibration-isolation optical table to suppress ex-
ternal vibrations, which were monitored using an accelerometer.
Each of the major components is described in the following in
detail.

The test section was a liquid filled rectangular container made
of transparent acrylic plates with a height of 110 mm and an in-
ternal cross section of 50.8 mm�width��50.8 mm �length�. A par-

ticle was placed at the center of the cell, so that the cell width of
50.8 mm was considered to be sufficiently large for the cell to be
regarded as an infinite cell as shown experimentally in Hassan et
al. �18�. To study the wall effect, three grooves were cut on a pair
of side walls to allow insertion of up to three flat plates and
change the cell width on one side as shown in Fig. 1. The distance
from the particle at the center of the cell to the nearest wall could
be changed to 7.5, 10, 13, 16.5, 18.5, or 25.4 mm, while the
distances to the other three walls were always kept at 25.4 mm.
This way the wall proximity effects on the particle motion could
be determined systematically.

The cell was filled with distilled water which has relatively low
viscosity ��=10−3 kg/m s at 20°C�, and may be considered as
inviscid from a theoretical point of view �18�. Inside the cell, a
spherical particle of D0=12.7 mm diameter was suspended using
a thin platinum wire of 125 �m diameter and 45–85 mm length.
The effects of the wire diameter as well as wire length on the
particle motion had been studied previously by Hassan et al. �18�.
Only spherical particles of different densities �acrylic, �S
=1.17 g/cm3; steel, �S=7.83 g/cm3; and aluminum, �S
=2.7 g/cm3� have been used in the present experiments leaving
other particle shapes for a future study.

A computer-controlled translation stage was used to vibrate the
fluid cell with submicron resolution and repeatability. It was con-
trolled to move horizontally with a specified amplitude and fre-
quency in a near sinusoidal manner. A CCD video camera �Hitachi
D.S.P VK C-370� with an interchangeable lens was used to cap-
ture the particle motion with sufficient magnification. The edge of
the particle was captured at 30 frames/s with a shutter speed set at
1 /1000 s−1 to obtain sharp images. A light source was placed far
behind the fluid cell to avoid any heating effect. The particle edges
recorded onto a video tape using a digital VCR �JVC AG-7355�
were analyzed using an image analysis program. In total, 255
consecutive images of particle edges captured over 8.64 s were
analyzed frame by frame, and the data were entered into a spread-
sheet to calculate the particle vibration amplitude and frequency.

In the experiments, the cell vibration frequency was varied in
small increments from 1 to 5 Hz at a constant cell vibration am-
plitude of 1.0, 0.5, or 0.25 mm. It should be noted that near the
resonance frequency between 1.5 and 1.7 Hz, the cell vibration
amplitude was reduced to avoid any possible collision of the steel
particle with the cell walls. The same procedure was repeated for
different particle densities �aluminum and acrylic� but under dif-
ferent vibration conditions depending on the particle amplitude.

The above procedure was repeated for different distances be-
tween the particle and the nearest cell wall to determine any wall
effects. Before the data were collected, the system was run for at
least 5 min to allow the particle and fluid motions to become
stabilized. The video camera was used to record the particle mo-
tion for at least 2 min. A pixel-to-micron conversion factor was
obtained by lowering a platinum wire of known diameter into the
fluid cell and recording its image. Then by using the same image
analysis program, the wire diameter in pixels was determined and
a pixel-to-micron conversion factor was computed.

The particle amplitude data were reported by Hassan et al. �18�
for the largest cell width, which could be regarded as an infinite
cell since the data agreed well with the predictions of an infinite
cell model. The model predicted a resonance phenomenon where
the particle amplitude sharply increases and this prediction was
observed experimentally. For a steel particle immersed in a large
cell subjected to vibrations and filled with water of density
=998 kg/m3, the particle amplitude was found to increase �de-
crease� with the wire length when the cell vibration frequency is
below �above� the resonance frequency. The particle amplitude
was also dependent on the cell vibration frequency and amplitude,
and particle and fluid densities.

Fig. 1 A semi-infinite cell

Fig. 2 Experimental setup.
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3 Theoretical Analysis of the Particle Motion
To study the wall proximity effect on the particle motion in an

inviscid fluid, it is necessary to analytically derive an equation of
particle motion that incorporates the particle distance to the near-
est cell wall and the particle diameter. Here, the method of images
is used for a particle moving in the direction normal to the nearest
wall.

Method of Images. This method assumes a spherical particle A
of radius R0 near a wall inside the cell and its virtual image, B,
with the same diameter existing on the outside of the cell as
shown in Fig. 3. Particle A has an equilibrium position near the
cell wall at a distance H from the wall. The other walls are con-
sidered to be sufficiently far away from the particle; thus, the
particle motion analyzed would be that in a semi-infinite cell. The
particle moves in the direction i normal to the nearest wall. The
boundary conditions for the given problem to be satisfied are
those for the so-called “mirror image” flow fields.

In the following theoretical analysis, the assumption of an in-
viscid model is justified because the Reynolds number is signifi-
cantly high for different cell vibration frequencies. For a steel
particle attached to a wire of length 76 mm and immersed in
water, the values of Reynolds number for a cell vibration ampli-
tude of 1 mm at vibration frequencies of 1.5 and 10 Hz are 530
and 668, respectively.

The velocity potential for a semi-infinite cell vibrated horizon-
tally at a frequency, f �Hz� or � �=2�f� in rad/s, and cell ampli-
tude, a, can be decomposed into four components and is then
given by applying the superposition principle

� = �1 + �2 + �3 + �4 �1�

where �1 is the velocity potential for a sphere in an infinite cell,
�2 represents the pendulum motion in the liquid included as a
potential flow, and �3 and �4 stand for the wall effects using the
method of mirror image.

Each term of Eq. �1� satisfies Laplace’s equation, as shown in
Hassan et al. �18� and Lamb �11�, and is given by

�1 = �a� . i · r�cos �t + C1
i · r

r3 �2�

�2 = − Ṙ · r + C2
Ṙ · r

r3 �3�

�3 = C3
i · r1

r1
3 �4�

�4 = C4
Ṙ · r1

r1
3 �5�

where r and r1 are the distances from the center of the particle and
its image, respectively, to a given point M in the cell. R is the
absolute position of the particle with respect to the inertial frame
of reference, and the dot on the vector R indicates the time de-
rivative. The constants C1,C2, C3, and C4 are to be determined
later by applying the boundary conditions, and i is a unit vector in
the direction of the cell motion.

In vector notation, the vectors,i, r, and r1 can be represented as
i�1,0 ,0�, r�x ,y ,z�, and r1�x-2H ,y ,z�. The boundary condition at
the wall is given by

�v · n�W = ��Ṙ + a�i cos �t� · n�W �6�

The velocity field is then given by the gradient of the velocity
potentials as

v = �� = ��1 + ��2 + ��3 + ��4 �7�

where � �i =
��i

�x
i +

��i

�y
j +

��i

�z
k �8�

By substituting Eq. �7� into the boundary condition �Eq. �6�� at the
cell wall and using Eq. �1�, the constants C1 and C2 are found to
be related to C3 and C4 as follows

C1 = − C3, C2 = − C4 �9�
Equations �2�–�5� can be written in dimensionless form by in-

troducing the dimensionless parameters for the fluid density, wire
length, particle-to-wall distance, cell vibration frequency, particle
and cell amplitudes, and fluid pressure as follows

�̃ =
�L

�S
L̃ =

L

R0
H̃ =

H

R0
�̃ =

�

�g/L
Ãp =

Ap

R0
ã =

a

R0

X̃p =
Xp

R0

t̃ = �t �̃i =
�i

�R0
2 r̃ =

r

R0
r̃1 =

r1

R0
p̃ =

p

��2R0
2 g̃ =

g

�2R0

�10�

Using these dimensionless parameters, Eqs. �2�–�5� can be written
as follows

�̃1 = �ã i · r̃�cos t̃ + C̃1
i · r̃

r̃3 �11�

�̃2 = − Ṙ · r̃ + C̃2
R̃r̃

r̃3 �12�

�̃3 = C̃3
i · r̃1

r̃1
3 �13�

�̃4 = C̃4
R̃ · r̃1

r̃1
3 �14�

The potential field �1 can be expanded as

�̃1 = ãx̃ cos t̃ + C̃1
x̃

r̃3 �15�

Hence, the velocity field ṽ1 corresponding to �̃1 is given by

Fig. 3 Semi-infinite cell model
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ṽ1 = ã cos t̃ i +
C̃1

r̃3 i −
3C̃1x̃2

r̃5 i −
3C̃1x̃ỹ

r̃5 j −
3C̃1x̃z̃

r̃5 k �16�

It can also be written as

ṽ1 = ã cos t̃ i +
C̃1

r̃3 i −
3C̃1�i · r̃�r̃

r̃5 �17�

by representing the position vector and its magnitude as

r̃1 = x̃ i + ỹj + z̃ k, �r̃� = �x̃2 + ỹ2 + z̃2 �18�

Similarly from Eq. �12�, the velocity potential, �̃2, can be writ-
ten as

�̃2 = − R̃
˙

xx̃ − R̃
˙

yỹ − R̃
˙

zz̃ + C̃2� R̃
˙

xx̃ + R̃
˙

yỹ + R̃
˙

zz̃

r̃3
� �19�

where the vectors R̃= �R̃x , R̃y , R̃z� and R̃
˙

= �R̃˙ x , R̃
˙

y , R̃
˙

z� depend only
on time t̃. The velocity field ṽ2 corresponding to �̃2 is given by

ṽ2 = − R̃
˙

+ C̃2
R̃
˙

r̃3 −
3C2�R̃˙ · r̃�r̃

r̃5 �20�

The velocity potential �̃3 in Eq. �13� can be also written as

�̃3 = − C̃1
�x̃ − 2H̃�

��x̃ − 2H̃�2 + ỹ2 + z̃2�3/2
�21�

where the vector r̃ and its magnitude are represented by

r̃1 = �x̃ − 2H̃�i + ỹj + z̃k �r̃1� = ��x̃ − 2H̃�2 + ỹ2 + z̃2 �22�

and the velocity field ṽ3 corresponding to �̃3 is given by

ṽ3 = −
C̃1

r̃3 i +
3C̃1�i · r̃1�r̃1

r̃1
5 �23�

The last dimensionless term �̃4 in Eq. �14� can be written as

�̃4 = − C̃2� R̃
˙

x�x − 2H� + R̃
˙

yy + R̃
˙

zz

r̃1
3

� �24�

and the velocity field ṽ4 corresponding to �̃4 is given by

ṽ4 = − C̃2
R̃
˙

r̃1
3 +

3C̃2�R̃˙ · r̃1�r̃1

r̃1
5 �25�

Hence, the velocity field ṽ written in a dimensionless form for a
semi-infinite cell is the sum of ṽ1, ṽ2, ṽ3, and ṽ4.

The boundary condition on the surface of a solid particle of
radius R0 is that the radial velocity has a zero component with
respect to the cell. This results from the impermeability condition
in an inviscid fluid,

ṽr = ��̃ · n = 0 �26�

where ṽr and n are the radial velocity component of ṽ and the unit
outward normal on the surface of the solid sphere A, respectively.

The condition given by Eq. �26� is satisfied at any point on the
particle surface, in particular at the point C on the same line
joining the centers of the two spheres A and its mirror image, B,
as shown in Fig. 3, H is taken as the particle-wall distance from
the equilibrium position. Hence,

i · n = 1, i · n1 = − 1, n · n1 = − 1 �27�

where n1 is the unit outward normal to the image of the sphere.
Setting the coefficient of i .n in Eq. �26� to zero yields

ã cos t̃ + C̃1 − 3C̃1 −
C̃1

�2H̃ − 1�3
+

3C̃1

�2H̃ − 1�3
= 0 �28�

Solving for C̃1 yields

C̃1 =
�ã cos t̃��2H̃ − 1�3

2�8H̃3 − 12H̃2 + 6H̃ − 2�
�29�

Also, setting the coefficient of R̃
˙

·n in Eq. �26� to zero results in

− 1 − 3C̃2 + C2 +
C̃2

�2H̃ − 1�3
−

3C̃2

�2H̃ − 1�3
= 0 �30�

Then, solving for C̃2 yields

C̃2 =
− �2H̃ − 1�3

2�8H̃3 − 12H̃2 + 6H̃ − 2�
�31�

If we let

G̃ = �W̃ − 1�3 �32�

and

K̃ = 2�W̃3 − 3W̃2 + 3W̃ − 2� �33�

where W̃=2 H̃ is the dimensionless distance from the particle to
its image through the nearest cell wall, expressions �29� and �31�
can be written as

C̃1 =
�a cos t̃�G̃

K̃
�34�

C̃2 =
− G̃

K̃
�35�

and Eq. �1� in a dimensionless form can be written as

�̃ = ã cos t̃ i · r̃ + �ã cos t̃�	 G̃

K̃

	 i · r̃

r̃3 −
i · r̃1

r̃1
3 
 − R̃

˙
· r̃ − 	 G̃

K̃



�	 R̃
˙

· r̃

r̃3 −
R̃
˙

· r̃1

r̃1
3

 �36�

The pressure p at each point in the fluid can be calculated from
the Bernoulli equation

��

�t
+

1

2
����2 = −

p

�L
− R̈ · r + g · r �37�

or in a dimensionless form as

��̃

�t̃
+

1

2
���̃�2 = − p̃ − R̃

¨
· r̃ + g̃ · r̃ �38�

where the dimensionless particle acceleration is

R̃
¨

=
R̈

�2R0
�39�

Applying Newton’ second law to the spherical particle of mass,
m, gives

mR̈ = Fp + mg + f �40�

where Fp is the effective force due to the fluid pressure on the
surface of the sphere, and f is the wire tension. Equation �40� can
be written in a dimensionless form as
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VR̃
¨

�̃R0
3 = F̃p +

Vg̃

�̃R0
3 +

f

�2R0
4 �41�

where F̃p =
Fp

�L�2R0
4 = −� p̃d s̃ �42�

V is the volume of the spherical particle, and the dots denote the
higher order derivatives.

By substituting Eq. �36� into Eq. �38� and using the fact that the
velocity ��̃ is zero on the particle surface, the dimensionless pres-
sure p̃ on the particle surface is given by

p̃ =�ã sin t̃�i · r̃� + ã sin t̃	 G̃

K̃

	 i · r̃

r̃3 −
i · r̃1

r̃1
3 


+ 	 G̃

K̃

	 R̃

¨
· r̃

r̃3 −
R̃
¨

· r̃1

r̃1
3

 + g̃ · r̃� �43�

Integrating Eq. �43� over the particle surface gives the dimension-
less effective force as

F̃p = − � V

R0
3 ã sin t̃i + ã sin t̃V	 G̃

K̃

	 1

R0
3 +

2

W3
i

+ 	 G̃

K̃

V	 1

R0
3 +

2

W3
R̃
¨

+ g̃
V

R0
3� �44�

Substituting Eq. �44� into Eq. �41� yields the acceleration in a
dimensionless form as

R̃
¨

= − �̃�ã sin t̃i + ã sin t̃	 G̃

K̃

	1 +

2

W̃3
i

+ 	 G̃

K̃

	1 +

2

W̃3
R̃
¨

+ g̃� + g̃ + f̃ �45�

where R̃
¨

= R̃
¨

p − ã sin t̃i �46�
and

f̃ =
�̃f

�LV�2R0
�47�

R̃
¨

p is the dimensionless form of the particle position Rp in the cell
frame of reference. Substituting Eq. �46� into Eq. �45� yields

�1 + �̃� G̃

K̃
	1 +

2

W̃3
�R̃
¨

p = �1 − �̃�ã sin t̃i + �1 − �̃�g̃ + f̃

�48�
Assuming small cell vibration amplitudes, the vertical compo-

nent of Eq. �48� yields the wire tension as follows

f̃ = g̃�1 − �̃� �49�
Substitution of Eq. �49� into Eq. �48� leads to the following dif-
ferential equation for the horizontal dimensionless displacement,

X̃p, of the particle with respect to the equilibrium position

�1 + �̃� G̃

K̃
	1 +

2

W̃3
�X̃
¨

p = �1 − �̃��ã sin t̃ − g̃
X̃p

L̃
� �50�

Fig. 4 Variation of the ratio of the particle amplitudes pre-
dicted by Eqs. „51… and „52… with the particle-wall distance to
particle radius ratio, H /R0, for „a… below-resonance frequencies
and „b… above-resonance frequencies „steel particle in water,
wire length=76 mm…

Fig. 5 Variation of the ratio of the particle amplitudes pre-
dicted by Eqs. „51… and „52… with the particle-wall distance to
particle radius ratio, H /R0, for „a… below-resonance frequencies
and „b… above-resonance frequencies „steel particle in water,
wire length=76 mm…
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Solving this second-order differential equation yields the par-
ticle amplitude for the particle moving in the direction normal to
the nearest cell wall,

Ãp =
�1 − �̃�ã

�1 − �̃�
g̃

L̃
− ��1 + �̃�� G̃

K̃
	1 +

2

W̃3
�
, �51�

By expanding the second term of the denominator in Eq. �51� in a

Taylor series in which W̃	1, we can also obtain an approximate
equation for the particle amplitude as follows

Ãp =
�1 − �̃�ã

�1 − �̃�
g̃

L̃
− �	1 +

�̃

2

�	1 +

3

8H̃3
�
�52�

We note that in the limit H→
, both Eqs. �51� and �52� reduce
to the expression for the amplitude of a particle in an infinite fluid
cell given by Hassan et al. �18�. For both semi-infinite and infinite
cells, the inviscid model predicts the particle amplitude,Ap, to be
linearly proportional to the cell vibration amplitude, a.

To assess the effect of the Taylor series expansion used in de-
riving Eq. �52� from Eq. �51�, their ratio denoted by � will be
examined

� =
Ãp

Ãpa

=

g

L�2 −
��S + �L�
��S − �L�	G

K
	 1

R0
3 +

2

W3


g

L�2 −
�2�S + �L�
2��S − �L�

	1 +
3

8
	R0

H

3
 �53�

The resonance frequency can be obtained from Eq. �51� or Eq.
�52� by equating the denominator to zero. This yields the follow-
ing expressions for the dimensionless resonance frequency

�̃res =� �1 − �̃�

1 + �̃� G̃

K̃
	1 +

2

W̃3

�54�

�̃res =� �1 − �̃�

1 +
�̃

2�	1 +
3

8H̃3

�55�

Equation �54� is valid for any value of H̃. In the limit, H→
, Eqs.
�54� and �55� both reduce to the expression obtained by Hassan et
al. �18� for an infinite cell. As the particle-wall distance is re-
duced, the resonance frequency also decreases but the degree of
reduction depends on the particle and fluid densities.

4 Results and Discussion
The inviscid model predictions for a semi-infinite cell given by

Eqs. �51� and �52� are now examined together with the experi-
mental data to evaluate the wall proximity effect on the steel
particle amplitude, when the particle is moving normal to the
nearest cell wall. As seen from the above theoretical derivation,
Eq. �51� is valid for any particle-to-nearest cell wall distance,
while Eq. �52� is an approximate solution for the particle ampli-

Fig. 6 Variation of dimensionless particle amplitudes with
particle-wall distance to particle radius ratio predicted by Eq.
„51… for „a… below-resonance frequencies and „b… above-
resonance frequencies „steel particle in water, wire length
=76 mm…

Fig. 7 Variation of the ratio of the particle amplitude for a
semi-infinite cell „Eq. „51…… to that for an in infinite cell with the
particle-wall distance to particle radius ratio, H /R0, for „a…
below-resonance frequencies and „b… above-resonance fre-
quencies „cell amplitude=16 and 30 �m, respectively…
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tude when W̃	1. The two expressions are first compared by plot-

ting their ratio, �, given by Eq. �53� against H̃ in Fig. 4, for a steel
particle suspended in water with a wire of length L=76 mm, un-
der different vibration conditions. The resonance frequency for

this case is about 1.60–1.64 Hz depending on the value of H̃, and

Figs. 4�a� and 4�b� show the values of � for vibration frequencies
below and above the resonance frequency, respectively. It is clear

that for H̃�1.5, the two expressions give predictions that agree
within 1%. At vibration frequencies well above the resonance fre-
quency, for example, 2.5 and 3 Hz in Fig. 4�b�, the approximate

Fig. 8 Variations of the dimensionless resonance frequencies for different particles
in a semi—infinite cell predicted by Eqs. „54… and „55… with H /R0 „wire length
=76 mm, „—… Eq. „54…, „---… Eq. „55……
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Eq. �52� can be used to predict the particle amplitude even near

the lowest value of H̃=1.2 shown in Fig. 4�b�.
Much greater values of the ratio � can, however, be obtained at

near the resonance frequencies as shown in Fig. 5, for a steel
particle in water with different wire lengths and a fixed cell am-
plitude. The ratio � increases from 1 to 4.5 in Fig. 5�a� for below-
resonance frequencies, but decreases from 1 to 0.4 in Fig. 5�b� for
above-resonance frequencies. Thus, although the approximate Eq.
�52� is simpler and easier to use, we will analyze the predictions
of Eq. �51� in greater detail in the following.

4.1 Particle Amplitude in a Semi-Infinite Cell. The dimen-
sionless particle amplitude in a semi-infinite cell for a given vi-
bration condition is affected by the particle distance to the nearest

cell wall, H, but the effect is different depending on whether the
vibration frequency is above or below the resonance frequency.
The predictions of Eq. �51� for a steel particle in water are shown

against H̃ for vibration frequencies below and above the reso-
nance frequency in Figs. 6�a� and 6�b�, respectively. In both fig-
ures, the cell amplitudes have been chosen so that all the particle
amplitudes are similar and can be plotted in the same figure. The
particle amplitude for a constant cell vibration amplitude de-
creases slightly with the increasing distance of the particle to the
nearest cell wall if the vibration frequency is below the resonance
frequency �Fig. 6�a��. On the other hand, above the resonance
frequency, the particle amplitude increases slightly with the in-
creasing particle-wall distance �Fig. 6�b��, which is intuitively ex-

Fig. 9 Variation of the dimensionless resonance frequency predicted by
Eq. „54… with the particle-wall distance to particle radius ratio, H /R0 „wire
length=76 mm…
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pected due to the confinement effect of the cell wall.
The wall effect is amplified near the resonance frequency as

illustrated in Figs. 7�a� and 7�b� which show the ratio of the steel
particle amplitude in a semi-infinite cell as predicted by Eq. �51�
to that in an infinite cell �H /R0→
� for cell vibration frequencies
below and above the resonance frequency, respectively. As the cell
vibration frequency gets closer to the resonance frequency, the

particle amplitude increases rapidly, so the wire length has been
reduced in Figs. 7�a� and 7�b� to show three different cases that
yield similar values of particle amplitude ratios.

The changes in the particle amplitudes shown in Fig. 6 and the
ratio of amplitudes in semi-infinite to infinite cells in Fig. 7 are
due to the wall proximity effect as well as a shift in the resonance
frequency with the particle-wall distance as discussed next.

Table 1 Experimental particle amplitudes in microns for different particle densities and the
widest cell width „cell vibration frequency: 0.5–2.5 Hz…

Frequency �Hz� 0.5 0.75 1 1.25 1.5 1.9 2 2.5
Steel particle
��=7.83 g/cm3�

80 205 486 1130 2213 1500 2420 1390

Aluminum particle
��=2.7 g/cm3�

94 265 760 2000 2100 990 900 716

Acrylic particle
��=1.17 g/cm3�

250 450 150 128 118 105 110 10

Table 2 Experimental particle amplitudes in microns for different particle densities for the
widest cell width „cell vibration frequency: 3.0–10.0 Hz…

Frequency �Hz� 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Steel particle 1180 980 925 870 860 855 840 830
Aluminum particle 656 580 560 540 530 520 510 505
Acrylic particle 95 100 110 100 100 110 105 95

Fig. 10 Variation of particle amplitudes with particle-wall dis-
tance to particle radius ratio predicted by Eqs. „51… and „52…
„steel particle in water, f=1.0 Hz, cell amplitude=1.0 mm, wire
length=76 mm…

Fig. 11 Variation of particle amplitudes with particle-wall dis-
tance to particle radius ratio predicted by Eqs. „51… and „52…
„steel particle in water, f=1.25 Hz, cell amplitude=0.50 mm,
wire length=76 mm…

Fig. 12 Variation of particle amplitudes with particle-wall dis-
tance to particle radius ratio predicted by Eqs. „51… and „52…
„steel particle in water, f=2.0 Hz, cell amplitude=0.25 mm, wire
length=76 mm…

Fig. 13 Variation of particle amplitudes with particle-wall dis-
tance to particle radius ratio predicted by Eqs. „51… and „52…
„steel particle in water, f=3.0 Hz, cell amplitude=0.50 mm, wire
length=76 mm…
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4.2 Effect of Particle-to-Wall Distance on Resonance
Frequency. Figure 8 shows the variations in the resonance fre-

quency with H̃ predicted by Eqs. �54� and �55� for different par-
ticle densities when the wire length is fixed at 76 mm. As shown

in Fig. 8, Eq. �55� is valid only for H̃�1.75. If the ratio H̃ is
below about 2, the resonance frequency is predicted by both equa-
tions to decrease, and the difference between the two predictions
also increases. Figure 9 shows the dramatic reductions in the reso-

nance frequency predicted by Eq. �54� as the value of H̃ gets
closer to 1.0.

4.3 Comparison Between Experimental Data and Theory.
The experimental data obtained for three different particle densi-
ties in the widest cell �half width of 25.4 mm�, where the particle
is in the center of the cell, are summarized in Tables 1 and 2 for
different cell vibration frequencies below and above the resonance
frequency, respectively.

The wire length used was 76 mm for steel and aluminum par-
ticles, and 70 mm for an acrylic particle. The cell amplitude for

the steel particle was 1.0 mm for all the vibration frequencies,
except at 1.5 and 1.9 Hz for which the cell amplitude was reduced
to 0.5 mm because of their closeness to the resonance frequency.
Similarly, the particle amplitudes obtained for aluminum and
acrylic particles are for the cell amplitude of 1.0 mm except near
the resonance at 1.25 Hz �aluminum particle�, and 0.6 Hz �acrylic
particle� where the cell amplitude was reduced to 0.5 mm.

For the steel particle in water, the particle amplitudes are plot-

ted against H̃ in Figs. 10 and 11 for below-resonance frequencies
and in Figs. 12 and 13 for above-resonance frequencies, respec-
tively. The experimental data obtained for smaller particle-wall

distances �H̃�3� were normalized by the particle amplitude data
obtained in the widest cell with a half width of 25.4 mm. In com-
parison with the experimental data, while the particle amplitudes
predicted by Eqs. �51� and �52� show consistent trends for the
effect of the increasing particle-wall distance to particle radius

ratio, H̃, Eq. �51� is seen to give better agreement with the experi-
mental data.

The experimental values shown in Figs. 10–13 are the average
values obtained from 15 to 20 separate measurements for each
run. Thus, the experiments have been repeated at least 15 times

Fig. 14 Theoretical and experimental variations of particle am-
plitude with cell vibration frequency „steel particle in water,
wire length=70 mm, widest cell tested, cell width=50.8 mm…

Fig. 15 Comparison of measured particle amplitudes with the
predictions of Eqs. „51… and „52… for different vibration frequen-
cies „H /R0=1.18, cell amplitude=0.47 mm, wire length=76 mm…

Fig. 16 Particle amplitude variation with wire length for different cell vibration fre-
quencies „steel particle in water, cell amplitude=1 mm, H /R0=1.18…
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for a given condition. Error bars of ±3% were obtained for the
data points which represent the maximum and minimum values
for a given run.

4.4 Particle Motion at High Cell Vibration Frequencies in
a Semi-Infinite Cell. As in the experiments conducted using an
infinite cell �18�, the particle amplitude remained nearly constant
at high frequencies. This can be seen clearly in Figs. 14 and 15
where the particle amplitude data obtained for a steel particle
located in the center of the widest cell �infinite cell� and at the

minimum distance to the cell wall �H̃=1.18�, respectively, are
plotted against the cell vibration frequency. Theoretical predic-
tions are also plotted in the same figures for vibration frequencies
above the resonance frequency. In all the cases, the particle am-
plitude decreases rapidly with the cell vibration frequency, and
reaches a nearly constant value for vibration frequencies above
5 Hz. The present theory predicts an asymptotic particle ampli-
tude, independent of the vibration frequency and wire length at
high cell vibration frequencies as given by Eqs �51� or �52�. Al-
though both theoretical predictions agree well with the experimen-

tal results even at H̃=1.18, Eq. �51� again shows better agreement
with the data.

Finally, the lack of dependence of the particle amplitude on the
wire length at high cell vibration frequencies is clearly shown in
Fig. 16. For a cell vibration amplitude of 1.0 mm in the smallest

semi-infinite cell �H̃=1.18� tested, the asymptotic particle ampli-
tude was measured to be �0.83 mm, which agrees well with the
value predicted by Eq. �51� or Eq. �52� for a steel particle in water.
Figure 16 shows that the particle amplitude remains nearly con-
stant and independent of the wire length at high vibration frequen-
cies. This indicates that for cell vibration frequencies well above
the resonance frequency, the motion of a spherical particle sus-
pended by a thin wire in a finite cell on the ground may corre-
spond to the motion of a wire-free particle in a fluid cell under
microgravity. This result establishes a firm basis on which the
vibration-induced particle motion in microgravity could be stud-
ied under normal gravity using a particle suspended with a thin
wire and vibrated at sufficiently high frequencies. Similar results
were also obtained for aluminum and acrylic particles at vibration
frequencies well above the resonance frequencies for different cell
amplitudes and wire length.

5 Conclusion
A study of vibration-induced particle motion in a water-filled

fluid cell has been conducted experimentally and theoretically.
The effect of the distance between the particle and the nearest cell
wall was investigated by measuring the amplitude of a solid par-
ticle suspended by a thin wire in the fluid cell. The semi-infinite
cell with a varying distance between the particle and the nearest
wall was vibrated horizontally using a linear translation stage at a
certain amplitude and frequency. The effects of wire length and
particle density have been investigated by using spherical particles
made of steel, aluminum, or acrylic. An inviscid model was also
developed using the method of images to analytically predict the
particle amplitude for different particle-wall distances, wire
lengths, and vibration conditions.

The inviscid model was found to be capable of predicting the
measured particle amplitude, and its dependence on the particle-
wall distance. Reducing the distance between the particle and the
nearest wall was found to decrease �or increase� the particle am-
plitude when the cell vibration frequency is above �or below� the
resonance frequency. The resonance frequency was also found to
significantly decrease with a reduction in the particle-wall dis-
tance. Thus, the wall proximity effect on the particle amplitude
could be attributed partly to the change in the resonance fre-
quency.

At vibration frequencies well above the resonance frequency,
the particle amplitude was found to reach a constant value, inde-

pendent of both the wire length and cell vibration frequency. This
suggests that the vibration-induced particle amplitudes measured
on the ground with a particle suspended by a wire may be re-
garded as representative of vibration-induced amplitudes of a
wire-free particle under microgravity.
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Nomenclature
a  cell vibration amplitude, m

Ap  particle amplitude, m
D0  particle diameter, m

f  cell vibration frequency, Hz
f  wire tension, N
g  gravitational acceleration, m/s2

H  distance between the particle and the nearest wall, m

H̃  dimensionless distance of the particle to the nearest
wall

i  unit vector in the direction of cell motion
L  length of the wire from the attachment point to the

center of mass of the sphere, m
m  particle mass, kg
p  static pressure, N/m2

r  fluid element position with respect to the particle, m
R  absolute position of the particle, m

R0  particle radius, m
t  time, s

W  distance between the particle and its image �=2H�, m
v  fluid velocity relative to the particle, m/s

Xp  horizontal displacement of the particle with respect to
the cell, m

Greek Symbols
�S  particle density, kg/m3

�L  liquid density, kg/m3

�  velocity potential, m2/s
�  cell vibration frequency, rad/s

Subscripts
s  solid particle
l  liquid

w  wall
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Exact Solutions for the
Functionally Graded Plates
Integrated With a Layer of
Piezoelectric Fiber-Reinforced
Composite
This paper deals with the derivation of exact solutions for the static analysis of function-
ally graded (FG) plates integrated with a layer of piezoelectric fiber reinforced composite
(PFRC) material. The layer of the PFRC material acts as the distributed actuator of the
FG plates. The Young’s modulus of the FG plate is assumed to vary exponentially along
the thickness of the plate while the Poisson’s ratio is assumed to be constant over the
domain of the plate. The numerical values of the exact solutions are presented for both
thick and thin smart FG plates and indicate that the activated PFRC layer potentially
counteracts the deformations of the FG plates due to mechanical load. The through-
thickness behavior of the plates revealed that the coupling of bending and extension takes
place in the FG plates even if the PFRC layer is not subjected to the applied voltage. The
solutions also revealed that the activated PFRC layer is more effective in controlling the
deformations of the FG plates when the layer is attached to the surface of the FG plate
with minimum stiffness than when it is attached to the surface of the same with maximum
stiffness. The solutions of this benchmark problem may be useful for verifying the other
approximate and numerical models of the smart functionally graded plates for which
exact solutions cannot be derived. �DOI: 10.1115/1.2165230�

1 Introduction
Recently, a new class of materials has been emerged which

exhibit variation of material properties particularly across the
thickness direction. Such class of materials is called functionally
graded materials �FGM�. In an endeavor to develop the super heat
resistant materials for using in space plane, Koizumi �1� first pro-
posed the concept of FGM. A general introduction to these FGMs
encompassing the fabrication, characterization, and design of
these materials has been presented by Suresh and Mortensen �2�.
The laminated composite structures can be tailored to design ad-
vanced structures with high stiffness to weight ratios, high
strength to weight ratios, and better thermal and transport proper-
ties. However, the sharp demarcation of the properties of each
layer at the interface between the two adjacent layers of laminated
composite structures causes large interlaminar shear stresses
which eventually may give rise to the initiation of delamination.
Such detrimental effect can be circumvented if the properties are
smoothly varied across the thickness direction and thus the use of
FGM may become an important issue for advanced structural ap-
plications. During the past few years a great amount of research
has been reported to analyze the behavior of functionally graded
materials. For example, Noda and Jin �3� derived a model to de-
termine the stress intensity factors of a functionally graded body
having a crack subjected to prescribed temperature field. Teymur
et al. �4� carried out the thermomechanical analysis of materials
which are functionally graded in two directions and demonstrated
that the onset of delamination could be prevented by tailoring the

microstructures of the composite plies. Feldman and Aboudi �5�
studied the elastic bifurcational buckling of functionally graded
plates under in-plane compressive load. They concluded that with
optimal nonuniform distribution of reinforcing phases, the buck-
ling load can be significantly improved for the FG plate over the
plate with uniformly distributed reinforcing phase. Gu and Asaro
�6� analytically investigated the behavior of functionally graded
material in the presence of a semi-infinite crack. Mian and Spen-
cer �7� derived the exact solutions for functionally graded plates
with zero surface traction. Praveen and Reddy �8� investigated the
nonlinear thermoelastic behavior of functionally graded ceramic
metal plates. Lee and Yu �9� derived the two-dimensional govern-
ing equations for electroded piezoelectric plates with general sym-
metry and graded properties across the thickness from the three-
dimensional equation of linear piezoelectricity. Loy et al. �10�
studied the vibration of cylindrical shells made of a functionally
graded material which is composed of stainless steel and nickel.
Aboudi et al. �11� further developed a more general higher-order
theory for functionally graded materials and illustrated the utility
of functionally graded microstructures in tailoring the behavior of
structural components in various applications. In 2000, Wang et
al. �12� proposed a method to determine the transient and steady
state thermal stress intensity factors of graded composite plate
containing noncollinear cracks subjected to dynamic thermal load-
ing. Yang �13� presented an analytical solution for computing the
time-dependent stresses in FGM undergoing creep. Yang and Shen
�14� studied the dynamic response of initially stressed functionally
graded thin plates subjected to partially distributed impulsive
loads. An elasticity solution for functionally graded beams is pro-
vided by Shankar �15� in which the beam properties are graded in
the thickness direction according to an exponential law. The exact
solutions for thermoelastic deformations of thick FG plates sub-
jected to both thermal and mechanical loads have been presented
by Vel and Batra �16�. Woo and Meguid �17� presented an ana-
lytical solution for the large deflections of plates and shallow
shells made of FGMs under the combined action of thermal and
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mechanical loads. Shen �18� also carried out nonlinear bending
analysis for simply supported functionally graded plate subjected
to mechanical and thermal loadings using a higher-order shear
deformation theory. Considering time-dependent thermal loads,
Vel and Batra �19� presented an analytical solution for three-
dimensional thermomechanical deformation of a simply supported
FG plate. Zhong and Shang �20� presented an exact three-
dimensional analysis of a simply supported functionally graded
piezoelectric plate considering that the mechanical and electrical
properties are the same exponential function of thickness co-
ordinate. More recently, Najafizadeh and Hedayati �21� studied
the thermoelastic stability of functionally graded circular plates.

In the quest for developing lightweight high performing flexible
structures a concept was emerged to develop the structures with
self-controlling and self-monitoring capabilities. Expediently, it
was discovered that if the piezoelectric materials are used as dis-
tributed actuators and sensors which are either mounted on or
embedded in the structure then the structure attains these self-
controlling and self-monitoring capabilities �22,23�. Such struc-
tures are customarily called “smart structures.” Piezoelectric ma-
terials induce an electric potential/charge when they are subjected
to a mechanical load by virtue of the direct piezoelectric effect
and are deformed due to the externally applied voltage/charge by
virtue of the converse piezoelectric effect. Use of piezoelectric
materials as distributed sensors and actuators for developing smart
structures is attributed to these two phenomena. The concept of
developing smart structures has been extensively employed for the
active vibration control of flexible structures during the past de-
cade �24–31�. Recently, a considerable interest has also been gen-
erated to analyze the functionally graded structures integrated
with piezoelectric actuators. For example, Ootao and Tanigawa
�32� carried out a theoretical analysis of simply supported func-
tionally graded plate integrated with a piezoelectric plate sub-
jected to transient thermal loading. They subsequently studied the
control of this smart functionally graded plate subjected to non-
uniform heat supply �33�. Reddy and Cheng �34� presented the
three-dimensional solution for functionally graded plates coupled
with piezoelectric actuator layer employing transfer matrix and
asymptotic expansion techniques. Wang and Noda �35� analyzed a
smart functionally graded composite structure composed of a
layer of metal, a layer of piezoelectric material �PZT�, and a func-
tionally graded layer between the metallic layer and the piezoelec-
tric layer. They showed that by the introduction of this function-
ally graded layer between the piezoelectric actuator and the
metallic layer, both stress discontinuity and edge local stresses can
be essentially reduced. They also investigated the thermally in-
duced fracture in a smart functionally graded structure �36�. Yang
et al. �37� performed an analysis of prestressed functionally
graded laminated plates integrated with piezoelectric actuator to
predict the large amplitude vibration behavior of the plates.

Although the monolithic piezoelectric materials are being
widely used as the distributed actuators for smart structures, the
main drawback of these existing monolithic piezoelectric materi-
als is that the control authority of these materials is very low as
their piezoelectric stress/strain coefficients are of very small mag-
nitudes. As the active damping of smart structures depends on the
control authority of the piezoelectric materials, tailoring of the
piezoelectric stress/strain coefficients may improve their control
authority and hence the damping characteristics of lightweight
smart structures can be improved. In an endeavor to tailor the
piezoelectric properties, Mallik and Ray �38� newly proposed the
concept of longitudinally piezoelectric fiber reinforced composite
�PFRC� materials and investigated the effective mechanical and
piezoelectric properties of these composites. The main concern of
the investigations was to determine the effective piezoelectric co-
efficient �e31� of these new concept PFRC materials which quan-
tifies the induced normal stress in the fiber direction due to the
applied electric field in the direction transverse to the fiber direc-
tion. They predicted that this effective piezoelectric coefficient

becomes significantly larger than the corresponding coefficient of
piezoelectric material of the fibers. Note that the significant
achievement of active control of flexural vibration of smart struc-
tures depends mainly on the magnitude of this piezoelectric
coefficient.

In an attempt toward the development of new functionally
graded smart structures, the authors intend to carry out the static
analysis of functionally graded plates integrated with a layer of
this new piezoelectric fiber reinforced composite �PFRC� material
and this paper is concerned with the derivation of exact solutions
for this analysis. The PFRC layer is considered to act as the dis-
tributed actuator of the FG plate. Pagano’s method �39� has been
employed to derive the exact solutions for displacements and
stresses of these smart FG plates due to the combined action of the
mechanical load and the activated PFRC layer. The exact solu-
tions of this benchmark problem could serve for the development
of new high performing smart functionally graded structures and
may be used for verifying the other approximate theories and
numerical models.

2 Methodology
In what follows, the method of deriving the exact solutions for

static behavior of the FG plate coupled with the PFRC layer will
be discussed. Figure 1 illustrates a simply supported plate made of
a FG material. Although the top surface of the plate has been
shown to be integrated with a layer of PFRC material which acts
as the distributed actuator of the FG plate, the PFRC layer can
also be attached to the bottom surface of the plate. The length,
width, and thickness of plate are denoted by a, b, and h, respec-
tively, while the thickness of the PFRC layer is denoted by hp. The
microstructural feature of the PFRC material has been described
in Ref. �38� and is not repeated here. The piezoelectric fibers in
the PFRC layer are considered to be aligned longitudinally in the
plane of the layer which is parallel to the reference plane. When
the PFRC layer is subjected to an applied electric field, the in-
plane actuation of the activated layer can be exploited to control
the deformations of the substrate FG plate and the resulting over-
all plate becomes a new smart functionally graded plate. The bot-
tom surface of the substrate FG plate is considered as the refer-
ence plane and the origin of the reference coordinate system
�x ,y ,z� is located at one corner of the bottom surface of the plate
such that x=0,a and y=0,b represent the edges of the substrate
FG plate. In order to obtain the exact solutions for static analysis
of this smart FG plate subjected to both mechanical and electrical
load, the expressions for displacements and stresses are to be de-
rived for the substrate FG plate and the PFRC layer satisfying all
the governing field equations, boundary conditions, surface trac-
tions, and the interface continuity conditions between the FG plate
and the PFRC layer. Since the coupling of electric field and elastic
field occur in the PFRC material, the expressions for electric dis-
placements and potential are also required to be derived for the
PFRC layer satisfying all the electrical boundary conditions for
obtaining the exact solutions of the smart FG plate.

Fig. 1 Functionally graded plate integrated with a PFRC layer
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The constitutive equations for the material of the elastic FG
plate are given by �15�

��k� = �Ck���k� k = 1 �1�
and those for the PFRC material are �38�

��k� = �Ck���k� − �e��E� k = 2 �2�

�D� = �e�T��k� + ����E� k = 2 �3�

in which the vectors ��� and ��� represent the state of stress and
state of strain at any point in the continuum denoted by the super-
script k �C� is the matrix of elastic constant, �e� is the matrix of
piezoelectric stress constants, ��� is the dielectric constant matrix,
�E� is the electric field vector, and �D� is the electric displacement
vector. The components of the stress and strain vectors are given
by

��� = ��x �y �z �yz �xz �xy�T ��� = ��x �y �z �yz �xz �xy�T

�4�

where �x, �y, and �z are the normal stresses in the x, y, and z
directions, respectively, �xz and �yz are the transverse shear
stresses; �xy is the in-plane shear stress; �x, �y, �z, �xz, �yz, and �xy
are the corresponding strains. The piezoelectric coefficient matrix
�e� and the dielectric constant matrix of the PFRC material are
given by

�e�T = � 0 0 0 0 e15 0

0 0 0 e24 0 0

e31 e32 e33 0 0 0
� ��� = ��11 0 0

0 �22 0

0 0 �33
�

�5�

The electric field vector �E� and the electric displacement vector
�D� appearing in Eqs. �2� and �3� are given by

�E� = �Ex Ey Ez�T �D� = �Dx Dy Dz�T �6�

where Ex, Ey, and Ez are the electric fields along x, y, and z
directions, respectively, and Dx, Dy, and Dz are the corresponding
electric displacements.

The assumption regarding the material properties of the func-
tionally graded materials employed by several researchers
�3,15,20,40,41� which is not only simple for mathematical ma-
nipulations but also provides essential features of FGM is that the
properties of FGM are exponential functions of thickness coordi-
nate. Thus in view of the need for simplicity in solving the elas-
ticity problem, it may be assumed that the FG material considered
in this study is isotropic at any point but its Young’s modulus E is
an exponential function of z and is given by �3,15,20,40,41�

E = E0e�z �7�

where E0 refers to the Young’s modulus of the material located at
the bottom surface of the FG plate and � is a parameter describing
the inhomogeneity of the FG material across the thickness. It is
also assumed that the Poisson’s ratio is constant over the domain
of the FG plate �15,20,41�. Thus the elastic coefficients of the
material of the FG plate are given by

Cij
1 = Cij

0 e�z �i, j = 1,2,3, . . . ,6� �8�

in which Cij
0 are the elastic constants of the isotropic material

located at the bottom surface of the FG plate. Thus based on the
value of �, either the top or the bottom surface of the FG plate
will be softest. In the absence of body forces, the governing equi-
librium equations for an elastic medium are given by

�ij,j = 0 i, j = 1,2, and 3 �9�

in which the comma in the subscript followed by the subscript j
indicates the partial differentiation with respect to the coordinate
denoted by j and repeated index implies summation over the
range of the index. Also, it should be noted that the values �1, 2, 3�
of the subscript i, j refer to the x, y, and z coordinates, respec-
tively. In addition to satisfying the governing equilibrium equa-
tions, the charge equilibrium equation must be satisfied for obtain-
ing the exact solutions for the PFRC layer and is given by

Di,i = 0 i = x,y, and z �10�
In the present investigation, the simply supported boundary

conditions as considered by Pagano �39� will be used for obtain-
ing the exact solutions and are given by

�x
k = vk = wk = 0 at x = 0,a �y

k = uk = wk = 0 at y = 0,b

k = 1 and 2 �11�

in which u, v, and w are the mechanical displacement components
at any point in the continuum denoted by the superscript k along
the x, y, and z directions, respectively. In order to derive the exact
solution for electric potential ��� in the PFRC layer, it is assumed
that the edges of the PFRC layer are suitably grounded such that
the electric potential at these edges become zero. Therefore the
essential electric boundary conditions for the PFRC layer are
�20,42�

� = 0 at x = 0,a y = 0,b �12�

For a particular mode of deformation, the admissible functions for
the displacements and electric potential which satisfy the bound-
ary conditions given by Eqs. �11� and �12� can be expressed as
�20,39,42�

	
uk�x,y,z�
vk�x,y,z�
wk�x,y,z�
��x,y,z�


 = �
cos px sin qy 0 0 0

0 sin px cos qy 0 0

0 0 sin px sin qy 0

0 0 0 sin px sin qy
�	

Uk�z�
Vk�z�
Wk�z�
��z�


 k = 1,2 �13�

in which p=m� /a and q=n� /b and m, n denote the mode num-
bers. The functions Uk�z�, Vk�z�, Wk�z� appearing in Eq. �13� de-
scribe the variations of the axial displacements across the thick-
ness of the substrate FG plate and the PFRC layer while the
function ��z� represents the variation of the electric potential
across the thickness of the PFRC layer.

2.1 Solutions of FG Plate. In case of functionally graded
plates, the functions U1�z�, V1�z�, and W1�z� can be assumed as
�39�

�U1�z� V1�z� W1�z�� = �U01 V01 W01�etz �14�

where U01, V01, W01 and t are the unknown constants to be deter-
mined. Substituting Eq. �1� into Eq. �9� and then using the strain-
displacement relations �39� in conjunction with Eqs. �7�, �8�, �13�,
and �14� a set of homogeneous algebraic equations are obtained
for the solutions of the FG plate which can be expressed in a
matrix form as follows
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�a11 a12 a13

a12 a22 a23

a31 a32 a33
�	U01

V01

W01 
 = 	0

0

0

 �15�

The various coefficients appearing in Eq. �15� are given by

a11 = C66
0 �t2 + �t� − ā11, a22 = C66

0 �t2 + �t� − ā22,

a33 = C11
0 �t2 + �t� − ā33, a12 = − pqCs1

0

Cs1
0 = C12

0 + C66
0 , a13 = p�tCs1

0 + �C66
0 �, a23 = q�tCs1

0 + �C66
0 �

a31 = − p�tCs1
0 + �C12

0 �, a32 = − q�tCs1
0 + �C12

0 � ,

ā11 = C11
0 p2 + C66

0 q2

ā22 = C66
0 p2 + C11

0 q2 ā33 = C66
0 �p2 + q2�

Using the last two equations of �15�, the unknown constants V01

and W01 can be expressed in terms of the unknown constant U01

as follows

V01 = F1U01 W01 = F2U01 �16�

in which the coefficients F1 and F2 are functions of the character-
istic parameter t and are given by

F1 =
a23a31 − a21a33

a22a33 − a23a32
F2 =

a21a32 − a31a22

a22a33 − a23a32
�17�

In order to find the nontrivial solutions of the unknown constant
U01, Eqs. �16� and �17� are substituted into the first equation of
�15� and the following characteristic equation for the FG plate is
obtained

�
n=1

6

Antn = 0 �18�

where

A6 = C11
0 C66

0 2, A5 = 3�C11
0 C66

0 2

A4 = 3�2C11
0 C66

0 2 + Cs1
0 2C66

0 �p2 + q2� − C66
0 �C11

0 ā11 + C11
0 ā22

+ C66
0 ā33�

A3 = − 2�C66
0 �C11

0 ā11 + C11
0 ā22 + C66

0 ā33� + 2�Cs1
0 2C66

0 �p2 + q2�

+ C11
0 C66

0 2�3

A2 = C66
0 ā33�ā11 + ā22� + C11

0 ā11ā22 − �2C66
0 �C11

0 ā11 + C11
0 ā22

+ C66
0 ā33� + Cs1

0 2p2q2�2Cs1
0 − C11

0 � + �2�p2 + q2��C12
0 C66

0 2

+ C12
0 Cs1

0 C66
0 + Cs1

0 C66
0 2� − Cs1

0 2�ā11q
2 + ā22p2�

A1 = C66
0 �ā33�ā11 + ā22� + C11

0 �ā11ā22 + Cs1
0 2p2q2��2Cs1

0 − C11
0 �

+ �3�p2 + q2�C12
0 C66

0 2 − �Cs1
0 2�ā11q

2 + ā22p2�

A0 = 2Cs1
0 C66

0 C12
0 �2p2q2 − C12

0 C66
0 �2�ā11q

2 + ā22p2�

+ ā33�Cs1
0 2p2q2 − ā11ā22�

Denoting the roots of Eq. �18� by tj �j=1,2 ,3 , . . . ,6�, the expres-
sion for the axial displacement u1 at any point in the FG plate
along x direction can be derived as

u1 = �
j=1

6

� je
tjz cos px sin qy �19�

where � j �j=1,2 ,3 , . . . ,6� are the unknown constants and can be
determined by satisfying the prescribed boundary and interface
conditions between the FG plate and the PFRC layer. Next, using
Eqs. �16� and �17�, the solutions for the displacements v1 and w1

in the y and z directions, respectively, can be obtained as

v1 = �
j=1

6

� jFj
1etjz sin px cos qy �20�

w1 = �
j=1

6

� jFj
2etjz sin px sin qy �21�

in which Fj
1 and Fj

2 are the values of F1 and F2 for t= tj, respec-
tively. Finally, using the constitutive relations given by Eq. �1� in
conjunction with Eqs. �8�, �19�, and �21� the solutions for the
stresses at any point in the substrate FG plate are derived as
follows

�x
1 = �

j=1

6

�− pC11
0 − qC12

0 Fj
1 + C13

0 tjFj
2�� je

tjz sin px sin qy �22�

�y
1 = �

j=1

6

�− pC12
0 − qC22

0 Fj
1 + C23

0 tjFj
2�� je

tjz sin px sin qy �23�

�z
1 = �

j=1

6

�− pC13
0 − qC23

0 Fj
1 + C33

0 tjFj
2�� je

tjz sin px sin qy �24�

�yz
1 = �

j=1

6

C44
0 �tjFj

1 + qFj
2�� je

tjz sin px cos qy �25�

�xz
1 = �

j=1

6

C55
0 �tj + pFj

2�� je
tjz cos px sin qy �26�

�xy
1 = �

j=1

6

C66
0 �q + pFj

1�� je
tjz cos px cos qy �27�

2.2 Solutions of the PFRC Layer. In case of the PFRC layer,
the functions Uk�z�, Vk�z�, Wk�z�, and ��z� appearing in the ad-
missible functions given by Eq. �13� can be expressed as

�U2�z� V2�z� W2�z� ��z�� = �U02 V02 W02 �0�erz �28�

where U02, V02, W02, �0, and r are the unknown constants to be
determined. Using the governing equations �9� and �10�, the con-
stitutive relations �2� and �3�, the strain-displacement relations
�39�, the electric field-potential relations �26�, and Eqs. �13� and
�28� another set of algebraic equations for the PFRC layer are
obtained as follows

�
b11 b12 b13r b14r

b12 b22 b23r 0

− b13r − b23r b33 0

− b14r 0 0 b44

�	
U02

V02

W02

�0

 = 	

0

0

0

0

 �29�

The various elements of the above matrix are given by

b11 = C55
2 r2 − b̄11, b12 = − pq�C12

2 + C66
2 �, b13 = p�C13

2 + C55
2 � ,

b14 = pe31, b22 = C44
2 r2 − b̄22

b23 = q�C23
2 + C44

2 �, b33 = C33
2 r2 − b̄33, b44 = b̄44 − �33r

2,

b̄11 = C11
2 p2 + C66

2 q2

b̄22 = C66
2 p2 + C22

2 q2, b̄33 = C55
2 p2 + C44

2 q2, b̄44 = �11p2 + �22q
2

At this point, it should be noted that the useful and practical range
of interest for the fiber volume fraction in a composite material is
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0.3–0.7. Within this range of fiber volume fraction, the values of
the effective piezoelectric constants e32, e33, e24, and e15 of the
piezoelectric fiber reinforced composite material are negligibly
small �38,43� in comparison to the value of the effective piezo-
electric constant e31. Also, within the said useful range of fiber
volume fraction, the effective value of the piezoelectric constant
e31 of the PFRC material being considered here is much larger
than that of the constituent fiber material. Hence, for the sake of
simplicity in the analysis, the piezoelectric coefficients e32, e33,
e24, and e15 of the PFRC material are not considered for deriving
the above noted algebraic equations given by Eq. �29�. From Eq.
�29�, the unknown constants V02, W02, and �0 can be expressed in
terms of the unknown constant U02 as follows

V02 = F3U02, W02 = F4U02, �0 = F5U02 �30�

in which the coefficients F3, F4, and F5 are given by

F3 = −
b13b23r

2 + b12b33

b22b33 + �b23�2r2 , F4 =
r�b22b13 − b12b23�
b22b33 + �b23�2r2 , F5 =

b14r

b44

�31�

In order to find the nontrivial solution of U02, substitution of Eqs.
�30� and �31� into the first equation of �29� leads to the following
characteristic equation

�
n=1

5

Bnr2�n−1� = 0 �32�

where

B5 = − C55
2 C44

2 C33
2 �33, B4 = g2�33 + g3C33

2 C44
2 ,

B3 = g6�33 + g7 B2 = g8�33 + g9

B1 = − g8b̄44, g1 = b̄33C44
2 + b̄22C33

2 − �b23�2,

g2 = g1C55
2 + b̄11C33

2 C44
2 − �b13�2C44

2

g3 = b̄44C55
2 + �b14�2, g4 = b23b13 + b12C33

2 , g5 = b̄22b13 + b12b23

g6 = g4b12 + g5b13 − g1b̄11 − b̄22b̄33C55
2 , g7 = �b13�2b̄44C44

2 − g1g3

− b̄11b̄44C44
2 C33

2

g8 = b̄11b̄22b̄33 − b̄33�b12�2,

g9 = g3b̄22b̄33 + b̄44�g1b̄11 − g4b12 − g5b13�

For the PFRC layer considered here, the roots of Eq. �32� are four
pairs of real quantities. Denoting these roots by ±rj �j=1, 2, 3, and
4�, the expressions for the axial displacements �u2, v2, and w2� and
the electric potential ��� at any point in the PFRC layer can be
derived as

u2 = �
j=1

4

�	 j cosh�rjz� + 
 j sinh�rjz��cos px sin qy �33�

v2 = �
j=1

4

�	 j cosh�rjz� + 
 j sinh�rjz��Fj
3 sin px cos qy �34�

w2 = �
j=1

4

�	 j sinh�rjz� + 
 j cosh�rjz��Fj
4 sin px sin qy �35�

� = �
j=1

4

�	 j sinh�rjz� + 
 j cosh�rjz��Fj
5 sin px sin qy �36�

where 	 j, and 
 j �j=1, 2, 3, and 4� are the unknown constants to
be determined from the prescribed boundary and interface conti-
nuity conditions; rj is the magnitude of the jth pair of roots of the
characteristic equation given by Eq. �32�; Fj

3, Fj
4, and Fj

5 are the
values of the constants F3, F4, and F5 when r=rj. Finally, using
Eqs. �33�–�36� and the constitutive relations given by Eqs. �2� and
�3�, the expressions for the stresses in the PFRC layer which ex-
actly satisfy the governing equilibrium equations �9� and �10� can
be derived and are given by

�x
2 = �

j=1

4

�− pC11
2 − qC12

2 Fj
3 + C13

2 Fj
4rj + e31Fj

5rj��	 j cosh�rjz�

+ 
 j sinh�rjz��sin px sin qy �37�

�y
2 = �

j=1

4

�− pC12
2 − qC22

2 Fj
3 + C23

2 Fj
4rj��	 j cosh�rjz�

+ 
 j sinh�rjz��sin px sin qy �38�

�z
2 = �

j=1

4

�− pC13
2 − qC23

2 Fj
3 + C33

2 Fj
4rj��	 j cosh�rjz�

+ 
 j sinh�rjz��sin px sin qy �39�

�yz
2 = �

j=1

4

C44
2 �Fj

3rj + qFj
4��	 j sinh�rjz� + 
 j cosh�rjz��sin px cos qy

�40�

�xz
2 = �

j=1

4

C55
2 �rj + pFj

4��	 j sinh�rjz� + 
 j cosh�rjz��cos px sin qy

�41�

�xy
2 = �

j=1

4

C66
2 �pFj

3 + q��	 j cosh�rjz� + 
 j sinh�rjz��cos px cos qy

�42�

3 Numerical Results
In order to assess the performance of the PFRC layer as a

distributed actuator for the FG plate, numerical values of the exact
solutions derived in the previous section are to be evaluated. It
should be noted that the expressions for the solutions of the sub-
strate FG plate contain six unknowns and those for the PFRC
layer contain eight unknowns. Thus, all together 14 unknown con-
stants are required to be evaluated. This can be accomplished by
satisfying the prescribed boundary conditions as well as the inter-
face continuity conditions as described in the following.

On the exposed surface of the PFRC layer, the following pre-
scribed boundary conditions are considered

�z
2�x,y,z� = f0 sin px sin qy, �xz

2 �x,y,z� = 0, �yz
2 �x,y,z� = 0

��x,y,z� = V sin px sin qy �43�

where f0�N/m2� and V�V� are the amplitudes of externally ap-
plied sinusoidal surface traction and electric potential functions,
respectively. Note that the value of z coordinate to be used in the
above-prescribed boundary conditions should be either h+hp or
−hp according to whether the PFRC layer is bonded to the top or
bottom surface of the substrate FG plate, respectively.
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The surface of the PFRC layer being attached to the substrate
FG plate is grounded such that electric potential at this surface
becomes zero �20,26,42�, i.e.

��x,y,z� = 0 �44�
At the interface between the FG plate and the PFRC layer, the

continuity conditions for displacements and interlaminar stresses
must be satisfied. These conditions are provided by

u1�x,y,z� = u2�x,y,z�, v1�x,y,z� = v2�x,y,z�

w1�x,y,z� = w2�x,y,z�, �z
1�x,y,z� = �z

2�x,y,z�

�yz
1 �x,y,z� = �yz

2 �x,y,z�, �xz
1 �x,y,z� = �xz

2 �x,y,z� �45�
At the exposed surface of the substrate FG plate the following

natural boundary conditions must be satisfied

�z
1�x,y,z� = 0, �xz

1 �x,y,z� = 0 �yz
1 �x,y,z� = 0 �46�

In Eqs. �44� and �45�, the values of z should be considered as h or
0, according to whether the top or bottom surface of the substrate
FG plate is integrated with the PFRC layer, respectively, while in
Eq. �46� the corresponding values of z will be 0 or h, respectively.
It is now obvious that the satisfaction of the boundary and the
interface continuity conditions, given by Eqs. �45�–�47�, results
into 14 simultaneous algebraic equations with same number of
unknown constants and thus these 14 unknown constants can be
uniquely determined yielding the numerical values of the exact
solutions for displacements and stresses in the overall smart
FG plate.

The following material properties for the isotropic material lo-
cated at the bottom surface of the substrate FG plate are consid-
ered for the numerical results

E0 = 200 GPa � = 0.3

in which � is the Poison’s ratio of the FGM. The thickness of the
FG plate is considered as 3 mm. The piezoelectric fiber and the
matrix of the PFRC layer are made of PZT5H and epoxy, respec-
tively. Considering 40% fiber volume fraction, the following elas-
tic and piezoelectric co-efficients of the PFRC layer are obtained
by using the micromechanics model derived earlier by one of the
authors �38� of this paper and are used for computing the numeri-
cal results

C11 = 32.6 GPa, C12 = 4.3 GPa, C13 = 4.76 GPa,

C22 = C33 = 7.2 GPa

C23 = 3.85 GPa, C44 = 1.05 GPa, C55 = C66 = 1.29 GPa,

e31 = − 6.76 C/m2

�11 = �22 = 0.037e − 9 C/V m �33 = 10.64e − 9 C/V m

Considering m=n=1 in the definition of p and q, the numerical
results are evaluated with and without applying the electrical po-
tential distribution on the actuator surface for different values of
length to thickness ratios s�=a /h� of the substrate FG plates. The
following non-dimensional parameters are used for presenting the
numerical results

��̄x,�̄y,�̄xy� =
1

f0s2 ��x,�y,�xy�, ��̄xz,�̄yz� =
1

f0s
��xz,�yz� ,

��̄z� =
1

f0
��z�

�47�

ū =
E0

f0s3h
u, w̄ =

100E0

f0s4h
w

It should be noted here that if the value of the inhomogeneity
parameter ��� tends to zero then the FG plate turns out to be a
homogeneous isotropic plate. It is obvious from Eq. �7� that if
Eh /E0→1 then the inhomogeneity parameter tends to zero with
Eh being the Young’s modulus of the material located at the top
surface of the FG plate. Hence, considering that the PFRC layer is
of negligible thickness and not subjected to the applied voltage,
the center deflection of the FG plate has been computed using the
expressions for the exact solutions derived in the previous section
when �→0. These are compared with the existing exact solutions
of homogeneous isotropic plate �39� with Young’s modulus E0 and
Poisson’s ratio � as shown in Table 1. It may be observed from
this table that the results excellently converge to that of the ho-
mogeneous isotropic plate when �→0. This comparison may be
considered as a method for validating the present exact solutions.
Next, assuming the thickness of the PFRC layer as 250 �m, and
the amplitude of distributed sinusoidal mechanical load as f0
=40 N/m2 �downward�, the mechanical displacements and
stresses in the substrate FG plate with large gradient �Eh /E0
=10� of properties are computed with and without applying the
externally applied voltage to the PFRC layer being bonded to the
top surface of the plate. These are presented in Table 2 for differ-
ent aspect ratios �s�. The results presented in Table 2 clearly reveal
that when the PFRC layer is subjected to externally applied posi-
tive voltage, it counteracts the deformations caused by the verti-
cally applied downward mechanical load while for a negative
voltage the PFRC layer increases the deformation caused by the

Table 1 Comparison of the center deflection and normal stress of the functionally graded
plate „s=100… with that of the homogeneous isotropic plate „E=E0… when the thickness of the
PFRC layer is negligible

Functionally graded plate

�=ln�Eh /E0� /h w̄
�̄x

�a /2 ,b /2 ,h� �=ln�Eh /E0� /h w̄
�̄x

�a /2 ,b /2 ,h�

2 −1.9905 −0.2484 0.5 −3.9809 −0.1564
1.5 −2.2926 −0.2260 0.7 −3.3549 −0.1753
1.1 −2.6737 −0.2040 0.9 −2.9560 −0.1908
1.01 −2.7901 −0.1983 0.99 −2.8181 −0.1969
1.001 −2.8026 −0.1977 0.999 −2.8054 −0.1975
1.0001 −2.8039 −0.1976 0.9999 −2.8042 −0.1976

Homogenous isotropic platea

N.A. −2.8040 −0.1976 N.A −2.8040 −0.1976

aReference �32�.
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downward mechanical load. Thus the PFRC layer can act as a
distributed actuator for smart functionally graded plates. It may be
noted from the constitutive equations of the piezoelectric material
given by Eq. �2� that the magnitude of the induced normal stress
depends on the magnitude of the applied voltage and the piezo-
electric coefficients while the stresses and deformations in the
substrate as well as in the PFRC layer due to mechanical load only
depend on the aspect ratio of the substrate, material properties of
the substrate layers, and the intensity of the applied mechanical
load. It is known that if the aspect ratio decreases, i.e., the sub-
strate plate becomes thick, the stresses and deflection of the sub-
strate plate decrease �39�. Hence, for a particular applied voltage
and intensity of applied mechanical load, the PFRC layer has to
counteract the less amount of deformation in case of thick sub-

strate �s=10� than in case of thin substrate �s=100� as can be
observed from Table 2. Thus the PFRC layer becomes more ef-
fective in the case of thick plate FG substrate than the thin one.
Note that similar results were found for laminated composite sub-
strate �26�. Table 3 illustrates the behavior of the FG plate for
which Eh /E0=0.1 under the combined action of mechanical load
and the activated PFRC layer being bonded to the top surface of
the plate. It may be observed from this table that as the maximum
value of E for this plate is much lower than that of the plate with
Eh /E0=10, the deformations of this plate with and without the
applied voltage is much larger than that in case of the FG plate
with Eh /E0=10. The results presented in Table 4 illustrate the
comparison of the performance of the PFRC layer when it is at-

Table 2 Responses of the FG substrate plates „Eh /E0=10… with and without the applied voltage to the PFRC layer bonded to the
top surface of the plates

s
V

�V�

ū
�0,b /2 ,0�
�0,b /2 ,h�

w̄
�a /2 ,b /2 ,h /2�

�̄x

�a /2 ,b /2 ,0�
�a /2 ,b /2 ,h�

�̄y

�a /2 ,b /2 ,0�
�a /2 ,b /2 ,h�

�̄z

�a /2 ,b /2 ,h /2�

�̄xy
�0,0,0�
�0,0 ,h�

�̄yz

�a /2 ,0 ,h /2�
�̄xz

�0,b /2 ,h /2�

10 0 −0.0194
0.0093

−0.9553 0.0871
−0.4201

0.0870
−0.4213

−0.3537 −0.0469
0.2242

−0.2215 −0.2218

100 −0.0307
−5.9373

186.8222 −5.8052
203.9846

−19.6720
57.9752

43.9487 6.8593
−70.4771

43.9606 2.7211

−100 −0.0081
5.9558

−188.7329 5.9794
−204.8249

19.8460
−58.8178

−44.6562 −6.9530
70.9256

−44.4035 −3.1646

20 0 −0.0195
0.0093

−0.9252 0.0873
−0.4171

0.0872
−0.4180

−0.3554 −0.0470
0.2243

−0.2223 −0.2225

100 −0.0337
−1.4670

45.5393 −1.3742
50.3911

−4.9333
14.3338

10.8462 1.6982
−17.4232

10.9839 0.4628

−100 −0.0053
1.4855

−47.3897 1.5489
−51.2253

5.1078
−15.1698

−11.5570 −1.7922
17.8717

−11.4284 −0.9079

100 0 −0.0195
0.0093

−0.9155 0.0874
−0.4161

0.0873
−0.4170

−0.3559 −0.0470
0.2243

−0.2225 −0.2228

100 −0.0202
−0.0497

0.9368 0.0291
1.6124

−0.1145
0.1751

0.0938 0.0230
−0.4813

0.2278 −0.1960

−100 −0.0188
0.0682

−2.7678 0.1457
−2.4446

0.2892
−1.0090

−0.8056 −0.1171
0.9298

−0.6729 −0.2495

Table 3 Responses of the FG substrate plate „Eh /E0=0.1… with and without the applied voltage to the PFRC layer bonded to the
top surface of the plates

s
V

�V�

ū
�0,b /2 ,0�
�0,b /2 ,h�

w̄
�a /2 ,b /2 ,h /2�

�̄x

�a /2 ,b /2 ,0�
�a /2 ,b /2 ,h�

�̄y

�a /2 ,b /2 ,0�
�a /2 ,b /2 ,h�

�̄z

�a /2 ,b /2 ,h /2�

�̄xy
�0,0,0�
�0,0 ,h�

�̄yz

�a /2 ,0 ,h /2�
�̄xz

�0,b /2 ,h /2�

10 0 −0.0914
0.1686

−8.7397 0.4042
−0.0807

0.3900
−0.0825

−0.6177 −0.2138
0.0416

−0.2114 −0.2248

100 −3.1845
−114.0117

3253.3 −41.0915
44.3075

−170.3199
28.1032

115.6052 56.9184
−19.4500

79.9749 −41.5579

−100 3.0017
114.3489

−3270.8 41.8999
−44.4689

171.0999
−28.2681

−116.8407 −57.3461
19.5333

−80.3977 41.1083

20 0 −0.0912
0.1735

−8.5437 0.4031
−0.0796

0.3883
−0.0812

−0.6184 −0.2131
0.0427

−0.2117 −0.2255

100 −0.9839
−27.0971

813.7105 −9.8557
10.6491

−43.1562
7.1105

28.8665 14.2724
−4.7790

20.2434 −10.8859

−100 0.8015
27.4441

−830.7979 10.6619
−10.8083

43.9327
−7.2729

−30.1034 −4.6986
4.8645

−20.6668 10.4348

100 0 −0.0912
0.1751

−8.4806 0.4027
−0.0793

0.3877
−0.0808

−0.6186 −0.2128
0.0431

−0.2118 −0.2258

100 −0.1285
−0.8991

24.4974 −0.0061
0.3451

−1.3654
0.2088

0.5663 0.3692
−0.1491

0.6118 −0.6565

−100 −0.0539
1.2493

−41.4587 0.8115
−0.5036

2.1408
−0.3704

−1.8036 −0.7948
0.2353

−10.0353 0.2049
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tached either on the top or at the bottom surface of the FG plate.
It may be observed from this table that for both thick and thin FG
plates, the activated PFRC layer causes maximum change in cen-
ter deflection with respect to the center deflection for V=0 when it
is placed on that surface of the FG plate which has the minimum
value of Young’s modulus �E�. Note that this maximum change in
center deflection is a measure of control authority of the PFRC
layer. Therefore, as a benchmark result, it may be concluded that
if the PFRC layer is attached with the surface of the FG plate
where the stiffness of the material is minimum then the activated
PFRC layer becomes most effective in controlling the elastic de-
formation of the FG plate. The through-thickness behavior of thin
FG substrate plates due to the action of the activated PFRC layer
being attached at the top surface of the substrates has been inves-
tigated and are presented here for a thin FG plate with Eh /E0
=10. Figures 2 and 3 illustrate the variation of axial �ū� and trans-
verse �w̄� displacements across the thickness of the substrate FG
plate. It may be observed from these figures that similar to the
homogeneous isotropic plate, as the substrate is thin, ū varies
linearly across the thickness of the substrate while the transverse
displacement is constant through the thickness. But, unlike the
homogeneous isotropic plate, the axial deformation �ū� of the FG
substrate across its thickness indicates that the coupling of bend-

Fig. 3 Distribution of transverse displacement „w̄… across the
thickness of thin „s=100… FG plate „Eh /E0=10… with and without
applied voltage to the PFRC layer

Fig. 4 Distribution of inplane normal stress „�̄x… across the
thickness of thin „s=100… FG plate „Eh /E0=10… with and without
applied voltage to the PFRC layer

Table 4 Comparison of effectiveness of the PFRC layer when placed at the top and bottom
surfaces of the FG plate

Eh /E0 a /h

PFRC layer on the top of the
FG plate

PFRC layer on the bottom
of the FG plate

V=0 V=100 V=−100 V=0 V=100 V=−100

10 10 w̄
�a /2 ,b /2 ,h /2�

−0.9553 186.8222 −188.7329 −0.9532 359.0874 −360.9938

100 w̄
�a /2 ,b /2 ,h /2�

−0.9155 0.9368 −2.7678 −0.9100 2.7147 −4.5346

0.1 10 w̄
�a /2 ,b /2 ,h /2�

−8.7397 3253.3 −3270.8 −9.2761 1789.0 −1807.5

100 w̄
�a /2 ,b /2 ,h /2�

−8.4806 24.4974 −41.4587 −8.9838 8.7604 −26.7281

Fig. 2 Distribution of axial displacement „ū… across the thick-
ness of thin „s=100… FG plate „Eh /E0=10… with and without ap-
plied voltage to the PFRC layer
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ing and extension takes place in the FG plate even if the PFRC
layer is not subjected to any voltage. This may be attributed to the
fact that the material properties of the substrate plate are graded
along the thickness direction. When the PFRC layer is subjected
to a positive applied voltage, both extension and bending of the
plate occur in unison as opposed to that caused by the mechanical
load. Also, it can be observed from Figs. 2 and 3 that if the
polarity of the voltage changes, the PFRC layer causes reversal of
the axial and transverse displacements of the FG substrate. The
variations of the axial normal stresses ��x, �y, and �z�, in-plane
shear stress ��xy�, and transverse shear stresses ��xz ,�yz� across
the thickness of this plate have been plotted in Figs. 4–9, respec-
tively. Since the Young’s modulus of the substrate FG plate is
having nonzero gradient with respect to the thickness coordinate,
the stresses are nonlinear across the thickness of the plate. It can
also be observed from Figs. 4, 5, 7, and 8 that the axial normal
stresses ��x ,�y� and the shear stresses ��xy ,�xz� become maxi-

mum at the interface between the PFRC layer and the FG plate.
Although it may be expected that the interlaminar stress ��xz� will
be higher at the top of the FG plate because of the transfer of
induced stress from the activated PFRC layer, large interlaminar
shear stress may cause detrimental effect such as delamination. As
the mechanical load acts along the vertically downward direction,
the transverse normal stress ��z� is negative across the thickness
of the FG plate. When the PFRC layer is subjected to positive
voltage of 100 V, the transverse normal stress ��z� becomes posi-
tive across a part of the thickness of this FG plate while it is
negative across the remaining part of the thickness and the maxi-
mum value of the negative part is less than that due to mechanical
load only as shown in Fig. 6. When the PFRC layer is subjected to
a negative voltage of magnitude 100 V, the transverse normal
stress ��z� increases throughout the thickness of the FG plate over
its mechanical counterpart.

Fig. 5 Distribution of in-plane normal stress „�̄y… across the
thickness of thin „s=100… FG plate „Eh /E0=10… with and without
applied voltage to the PFRC layer

Fig. 6 Distribution of transverse normal stress „�̄z… across the
thickness of thin „s=100… FG plate „Eh /E0=10… with and without
applied voltage to the PFRC layer

Fig. 7 Distribution of in-plane shear stress „�̄xy… across the
thickness of thin „s=100… FG plate „Eh /E0=10… with and without
applied voltage to the PFRC layer

Fig. 8 Distribution of transverse shear stress „�̄xz… across the
thickness of thin „s=100… FG plate „Eh /E0=10… with and without
applied voltage to the PFRC layer

630 / Vol. 73, JULY 2006 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.29. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



4 Conclusions
This paper deals with the exact solutions for static analysis of

functionally graded plates integrated with a layer of PFRC mate-
rial which acts as the distributed actuator for the plates. The PFRC
material considered here is a new smart material with enhanced
effective piezoelectric coefficient as compared to its constituent
monolithic counterpart and the piezoelectric fibers are oriented
longitudinally along the length of the substrate FG plates. When
the PFRC layer is subjected to a positive voltage, it counteracts
the deformations caused by the vertically downward mechanical
load and vice versa. The activated PFRC layer significantly affects
the distribution of all in-plane and transverse stresses across the
thickness of the FG substrate plate and is efficiently able to actu-
ate both thick and thin plates. The through-thickness behavior of
the FG plate indicates that similar to homogeneous isotropic
plates axial displacements are linear across the thickness of the
plate while the transverse displacement is constant across the
thickness. But in contrast to the homogeneous isotropic plates,
coupling of bending and extensional deformations occurs in the
FG plate even if the PFRC layer is not subjected to any voltage.
Also, unlike the thin homogeneous isotropic plates, the axial nor-
mal stresses and the in-plane shear stress are nonlinear across the
thickness of the thin substrate FG plate. The numerical values of
the exact solutions also revealed that the performance of the acti-
vated PFRC layer becomes maximum when the PFRC layer is
attached with the softest surface of the substrate FG plate. The
benchmark results presented in this paper may be useful for de-
veloping new functional smart structures and may serve the pur-
pose of verifying the numerical models of functionally graded
smart structures for which exact solutions are not possible.
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On the Crashworthiness of
Shear-Rigid Sandwich Structures
This paper deals with the evaluation of the crashworthiness of thin-walled sandwich box
structures for automotive applications. Quasi-static crushing simulations are carried out
to estimate the energy absorption of prismatic box columns made from sandwich sheets.
The sandwich sheets have perforated cores of different densities with staggered holes
perpendicular to the panel faces. It is found that the specific energy absorption of col-
umns made of sandwich sheets is approximately the same as that of conventional columns
composed of homogeneous sheets of the same total wall thickness. Furthermore, theoret-
ical analysis indicates that by increasing the core thickness, sandwich structures could be
up to 50% lighter while providing the same mean crushing force. However, these gains
may not be achieved in practical applications since increasing the core thickness also
increases the likelihood of premature face sheet fracture during crushing.
�DOI: 10.1115/1.2165232�

1 Introduction
Various technologies have been proposed in the past to design

lightweight and crashworthy automotive body structures. Con-
cepts include the use of fiber reinforced plastics �e.g., Jacob et al.
�1��, crash-optimized cross-sections �Kim and Wierzbicki �2��,
foam fillings �e.g., Reid et al. �3�, Seitzberger et al. �4�, Santosa et
al. �5��, and sandwich construction. The latter concept has been
successfully employed in various transportation vehicles, notably
in aircrafts and high-speed trains, but sandwich technology is sel-
dom used in passenger cars. Sandwich panels exhibit an excep-
tionally high flexural stiffness per unit weight, but in automotive
applications, their crushing performance must be considered as
well. In passenger cars, a substantial amount of the frontal impact
energy is absorbed by deforming the longitudinal rail which is
typically designed as a thin-walled box structure. When subject to
axial loading, thin-walled box structures respond under the forma-
tion of folds �Fig. 1�. As illustrated in Fig. 2 and discussed by
Mohr and Wierzbicki �7�, the folding of a box structure made
from sandwich sheets is strongly influenced by the shear strength
of the core material. Figures 2�b� and 2�c� each show a longitudi-
nal cut through a folding sandwich wall �see dashed lines in Fig.
2�a�� for so-called “shear-soft” and “shear-rigid” core materials,
respectively. Throughout the folding, the core material is subject
to out-of-plane shear stresses, �TX �where the x-axis is aligned
with the column axis, and the T-axis corresponds to the thickness
direction, see coordinate system in Fig. 2�b�. If the shear stresses
exceed the core yield strength, ��TX��sTX, the sandwich cross sec-
tion experiences large shear deformation, which is referred to as
shear-soft behavior. Conversely, the folding mode is referred to as
“shear rigid” when the shear strength is sufficiently large, i.e.
��TX��sTX, and the shear deformation in the core material is small.
In the shear-rigid case, initially perpendicular cross sections re-
main perpendicular which requires substantial stretching and com-
pressing of the respective sandwich face sheets �Fig. 2�c��.

State-of-the-art sandwich panels which are used in aerospace
and civil engineering are usually too thick for the manufacture of
automotive components. Their thicknesses are typically in the tens

of millimeter range whereas common sheet thicknesses in car
bodies range from about 0.5 to 2.0 mm. Therefore, new technolo-
gies have been developed which led to the design of so-called thin
sandwich sheets with thicknesses of the order of 1 mm. Gustafs-
son �8� proposed the 1.2-mm-thick hybrid stainless steel assembly
�HSSA�. This sandwich sheet material comprises a 1-mm-thick
10% relative density core material made of 20-�m-thick steel
fibers which are oriented perpendicular to the face sheets. In order
to improve the shear strength of the HSSA fiber core, Markaki and
Clyne �9� developed a random network fiber core of similar den-
sity but different fiber orientations and solid joints between con-
tact fibers. With automotive applications in mind, Mohr and
Straza �10� presented an all-metal sandwich sheet of 2.5 mm
thickness with a fine cell honeycomb core that could withstand the
high shear loads in a forming operation. Mohr and Wierzbicki �7�
investigated the crushing behavior of box columns made of the
1.2-mm-thick HSSA and found that the crushing response is
dominated by the “shear-soft” behavior of the fibrous core mate-
rial �Fig. 2�b��. The crushed sandwich columns featured a consid-
erably short folding wavelength due to the pronounced strength
disparity between the face sheets and the core material. At the
same time, the results have shown that the specific energy absorp-
tion of box structures made from shear-soft sandwich sheets may
be up to 60% higher than that of very-thin monocoque structures.
Santosa and Wierzbicki �11� performed a numerical and theoreti-
cal analysis on sandwich sheets and concluded that for the same
energy absorption, sandwich columns may be 40%–60% lighter
than their solid-section counterparts.

The overall objective is to evaluate the weight specific energy
absorption of sandwich structures and compare their performance
with conventional thin-walled designs. Thin sandwich sheet tech-
nology is still at an early stage of development. Estimating their
weight savings potential in crashworthiness applications is of
great importance in order to guide future sandwich material de-
velopments. The main focus of this study is to assess the weight
savings potential of so-called “shear-rigid” sandwich construc-
tions. First, a finite element study is carried out to determine the
energy absorption behavior of 1.6-mm-thick sandwich columns.
Perforated sandwich core materials of relative densities ranging
from 25% to 60% are considered �Fig. 3�a�� since these may be
manufactured in a low cost mass production process. Theoretical
arguments are developed to explain the simulation results. It is
shown that the aforementioned conclusions regarding the specific
energy absorption of sandwich structures must be tempered from a
theoretical point of view. Sandwich construction may lead to sub-
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stantial weight savings in crashworthiness applications, but these
are fairly small when realistic configurations are considered.

2 Finite Element Simulations
The crushing behavior of square sandwich box columns �Fig. 2�

is studied using finite element simulations. It is assumed that both
the face sheets and the cellular sandwich core are made of the
same metallic base material. In a first step, we determine the re-
lationship between the elasto-plastic properties of the core mate-
rial and its relative density from the finite element analysis of
characteristic microstructures. Subsequently, at a larger length

scale, numerical simulations are carried out to investigate the
crushing response of prismatic columns made from sandwich ma-
terials of different relative densities.

2.1 Mechanical Properties of the Perforated Core
Material. Figure 3�b� shows the two-dimensional staggered hole
pattern which characterizes the microstructure of the perforated
core material. Denoting the hole diameter and spacing by D and d,
respectively, the relative density of the core material, �* �that is
the ratio of the core material density �c to the density of the basis
material � f� may be expressed as

Fig. 1 Example of a 120-mm-wide and 100-mm-high square box column made from an
aluminum honeycomb sandwich sheet „a… before and „b… after quasi-static crushing
„Mohr and Wierzbicki †6‡…

Fig. 2 „a… Schematic of the crushing of a square sandwich box
column. In the column corners the energy is mostly dissipated
through stretching „shaded area… whereas cell wall bending
dominates along the hinge lines „thick lines… „b… and „c… Longi-
tudinal cut through a cell wall; in the case of shear-soft sand-
wich sheets „b…, the core material undergoes large shear defor-
mations as the sandwich is bent, whereas in the case of shear-
rigid sandwich sheets „c…, initially perpendicular cross sections
remain perpendicular throughout bending while the two face
sheets are respectively compressed or stretched „Mohr and
Wierzbicki †7‡….

Fig. 3 Microstructure of the perforated sandwich core mate-
rial. The in-plane coordinate axes have been labeled “x” and “
y,” while “T” indicates the out-of-plane direction. The dashed
wire frame in „a… and the rectangle in „b… highlight the mechani-
cal unit cells which are chosen for numerical analysis of the
out-of-plane and in-plane properties, respectively.
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�* =
�c

� f
= 1 −

�

2�3

1

�1 +
d

D
�2 �1�

In the limiting case of zero spacing between the holes �d=0�, the
relative density is �*=9.3%, which corresponds to the theoreti-
cally lightest perforated core material. Note that standard perfo-
rated plates have a significantly larger �*. When characterizing
orthotropic sandwich core materials, it is useful to distinguish
between the in-plane and out-of-plane properties. The two in-
plane directions x and y are aligned with the symmetry axes of the
characteristic two-dimensional core microstructure. The out-of-
plane direction which is aligned with the direction of the cylindri-
cal holes is referred to as T-direction. The mechanical behavior of
the perforated core materials depends on their relative density.
Here, finite element simulations are carried out for four different
core densities. We chose D=1 mm and varied the hole spacing d.
The core configurations are as follows: d=0.1 mm ��*=25% �, d
=0.2 mm ��*=37% �, d=0.3 mm ��*=46% �, and d=0.5 mm ��*

=60% �. The base material is modeled as elasto-plastic Levy-
Mises solid with linear isotropic hardening behavior: Young’s
modulus Ef =210 GPa, elastic Poisson’s ratio �=0.33, initial yield
stress �0=300 MPa, hardening modulus H=1000 MPa, and mass

density � f =7.8 g/cm3.

2.1.1 In-Plane Properties. Due to the two-dimensional period-
icity of the perforated microstructure, the in-plane properties may
be determined from the analysis of a suitable mechanical unit cell
�see dashed rectangle in Fig. 3�b��. The geometry is discretized by
four-node plane stress elements �type CPS4R, Abaqus �12��. The
deformed meshes for the lightest and heaviest core structure are
shown in Fig. 4. The following displacement conditions have been
chosen along the unit cell boundaries

at x = 0 ux = 0 �2�

at x = a ux = 	xxa �3�

at y = 0 uy = 0 �4�

a= �D+d� /2 and b=�3�D+d� /2 denote the unit cell width along
the x- and y-direction, respectively �Fig. 4�b��. It follows from
symmetry that

at y = b uy = 	uy
y=b �5�

where the term 	uy
y=b denotes the average displacement of all
nodes along the boundary y=b. For each core configuration, the
unit cell is subjected to compression and tension along the

Fig. 4 In-plane loading in the x-direction: „a… compression and „b… tension for
�*=25%, „c… compression and „d… tension for �*=60%

Journal of Applied Mechanics JULY 2006, Vol. 73 / 635

Downloaded 04 May 2010 to 171.66.16.29. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



x-direction as prescribed by 	xx. The respective macroscopic en-
gineering stresses �xx are calculated and plotted as a function of
the work-conjugate engineering strain 	xx �Fig. 5�. Note that the
depicted macroscopic stresses are normalized by �0�*. Irrespec-
tive of the core configuration and loading direction, the stress-
strain curves increase monotonically. All curves are in hierarchical
order with respect to the relative density which indicates an in-
crease in microstructural efficiency the higher the relative density.
The material response to in-plane shear loading has not been in-
vestigated because it is only of minor importance for the crushing
response of sandwich structures. Furthermore, it is assumed that
the material response to uniaxial loading along the y-axis may be
approximated by the macroscopic response curves for loading
along the x-axis, i.e., �yy�	yy���xx�	xx�.

2.1.2 Out-Of-Plane Properties. The out-of-plane properties of
the perforated core material describe its behavior under shear and
normal loading in the T-x- and T-y-planes. A fully three-
dimensional finite element model is used to study the out-of-plane
response �Fig. 6�. Again, we make use of the periodicity of the
microstructure and limit our attention to the behavior of the me-

chanically representative unit cell of the core material. The bound-
ary conditions at the top and bottom boundaries of the three-
dimensional unit cell are

at T = 0 ux = uy = uT = 0 �6�

at T = C ux = 
TXC uy = 0 uT = 	uT
T=C �7�

The term 
TXC corresponds to the shear displacement which is
applied to the top boundary. Plane strain conditions are prescribed
in the y-direction, i.e.,

at y = 0 uy = 0 �8�

at y = b uy = 0 �9�
Furthermore, we impose three periodicity conditions at the bound-
aries x=0 and x=2a

ux�x = 0,y = yi,T = Tj� = ux�x = 2a,y = yi,T = Tj� �10�

uy�x = 0,y = yi,T = Tj� = uy�x = 2a,y = yi,T = Tj� �11�

uT�x = 0,y = yi,T = Tj� = uT�x = 2a,y = yi,T = Tj� �12�
Figure 6�a� shows the unit cell for the 25% relative density core
material subject to shear loading in x-direction. The boundary
conditions at the top are chosen such that the macroscopic stress
in the T-direction is zero. In return, we observe considerable com-
paction along the T-direction as shear loading is applied. Similar
behavior is observed for higher density cores, but the shear-
induced compaction is less pronounced. As for the in-plane load-
ing, we assume that the response to shear loading in the T-y plane
�Fig. 7� may be approximated by the results for the T-x-plane, i.e.,
�TY�	TY���TX�	TX�.

The core material response to uniaxial loading along the
T-direction is calculated analytically. For this loading condition,
the microstructural stress state is uniaxial and the rule of mixtures
applies

�TT = �*��0 + H	TT� �13�

2.1.3 Macroscopic Modeling of the Core Material. Fully
three-dimensional mechanism-based constitutive models for per-
forated core materials must be developed in the future. In this
study, we calibrate the heuristic constitutive model 126 of the
LS-DYNA material model library �LSTC �13�� such as to approxi-
mate the mechanical behavior of the core material. According to
the formulation of model 126, the elasto-plastic material behavior
is defined by a six-dimensional cube in the six-dimensional stress
space of �xx, �yy, �TT, �Tx, �Ty, and �xy along with an associated
flow rule. Strain-hardening/softening changes the size of the cube,
but it does not alter the orientation of the cube faces. All stress-

Fig. 5 Engineering stress-strain curves for uniaxial in-plane
loading along the x-direction. The results are shown for four
different cores densities: �*=25%, 37%, 46%, and 60%.

Fig. 6 Out-of-plane shear loading along the x-direction: „a…
�*=25%, „b… �*=60%

Fig. 7 Engineering stress-strain curves for out-of-plane shear
loading along the T-x-plane
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strain curves are approximated by linear hardening functions.
Thus, for each component �ij of the Cauchy stress tensor, the
interval of admissible stress states is given by

− sij
0 + Hij

c 	ij
p � �ij � sij

0 + Hij
t 	ij

p �14�
where the logarithmic plastic strains are defined as

	ij
p = 	ij −

�ij

Eij
�15�

In sum, four material properties must be specified for each stress
component �ij: �1� the elastic modulus, Eij, �2� the initial yield
stress, sij

0 , �3� the hardening modulus for tensile loading, Hij
t , and

�4� the hardening modulus for compressive loading, Hij
c . Table 1

summarizes these material model parameters after calibration for
the perforated core materials. Note that we assume the same ma-
terial response to loading in the T-x and T-y-planes. The key
deficiency of the core material model is that the yield and hard-
ening responses of the six stress components are decoupled. In the
present structural application, coupling effects would weaken the
core material whereas the local interaction of the face sheets and
core would increase the core strength. In sum, both opposite ef-
fects are expected to result in an overall small error in the simu-
lation results.

2.2 Crushing Simulations. Thin-walled box columns with
square cross sections �Fig. 1� of B=80 mm width are considered
as representative for energy absorbing members in standard car
bodies. The crushing simulations are carried out for columns
made from sandwich sheets with different core materials but the
same face sheet and core thickness. With the exception of the
relative density of the sandwich core material, all other model
parameters are kept constant:

�i� cross-section width, B=80 mm,
�ii� column height of l=156 mm,
�iii� face sheet thickness, t=0.2 mm,
�iv� total sandwich sheet thickness, h=1.6 mm,
�v� core thickness, C=h−2t=1.2 mm.

Solid elements are chosen to discretize the sandwich column �Fig.
7�. It is important to note that high-density core materials contrib-
ute to the bending resistance of the sandwich cross section and
thus, the central core layer has to be represented by several solid
elements along the out-of-plane direction. The 0.2-mm-thick face
sheets are discretized by a single layer of solid elements, whereas
four reduced-integration solid elements represent the
1.2-mm-thick core material �Fig. 8�b��. Regarding the modeling of
the box columns, we make use of the symmetry of the square

cross section: the quarter model �Fig. 8�a�� may be used with
suitable symmetry boundary conditions to represent the exten-
sional and inextensional folding modes. Moreover, since prelimi-
nary simulations indicated the dominance of the fully extensional
mode, an eighth model is chosen for computational efficiency
�Fig. 8�b��. The axial loading is quasi-statically applied to the top
of the column by a flat moving rigid wall. Contact is defined
between all nodes and elements of the face sheets. In sum, the
model includes about 10,000 reduced-integration brick elements.
180,000 explicit time steps are performed throughout the crushing
over a distance of 80 mm. The simulations are carried out for
quasi-static conditions. Under dynamic loading, the crushing
mode may be affected by both the strain rate sensitivity and the
lateral inertia throughout the fold formation. The problem of strain
rate sensitivity has been extensively studied in literature also in
relation to the crashworthiness problems �see for example,
Abramowicz and Jones �14��. It is relatively easy to replace the
plastic constitutive equations by the viscoplastic behavior and re-
run the calculations. This has not been done because this will not
bring any new qualities. It should be noted that the loading ve-
locities in car crashes typically do not exceed 15 m/s. In this
range, lateral inertia effects are still considered to be small for
conventional thin-walled structures. It was shown by Jamjiam et
al. �15� that inclusion of lateral inertial will introduce only 1%
change in resistance in dynamically loaded honeycomb blocks.
The same argument may also apply to sandwich structures since
the weight of the laterally accelerated material is of the same
order of magnitude as that of conventional homogeneous cross-
sections.

2.3 Results. The computed force-displacement curves are
shown in Fig. 9. The curves are in hierarchical order with respect
to the relative density of the core material. The mean crushing
force has been evaluated for each simulation result by dividing the
integral of each force-displacement curve P�u� by the final crush-
ing distance of uf =80 mm,

Pm =
1

uf
�

0

uf

P�u�du �16�

The lowest curve, which is the result for the structure with the
25% relative density core material, has a mean force level of

Table 1 Input data for LS-DYNA material model 126

�* ���

Core configuration

S1
25.0%

S2
37.0%

S3
46.3%

S4
59.7%

Exx �MPa� 10,025 24,380 39,155 65,420

sxx
0 �MPa� 22 44 58 92

Hxx
c �MPa� 84 143 195 251

Hxx
t �MPa� 13 62 131 216

ExT �MPa� 11,812 16,350 22,209 31,850

sxT
0 �MPa� 28 48 65 92

HxT
c �MPa� 69 114 151 200

HxT
t �MPa� 69 114 151 200

ETT �MPa� 52,604 77,744 97,308 125,356

sTT
0 �MPa� 75 111 139 179

HTT
c �MPa� 250 370 463 597

HTT
t �MPa� 250 370 463 597

Fig. 8 FE-mesh: „a… side view of the quarter model, „b… top
view of the eighth model. The red elements represent the t
=0.2-mm-thick face sheets, the blue elements discretized the
C=1.2-mm-thick core material. The total sandwich sheet thick-
ness is h=C+2t=1.6 mm.
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about 32 kN. The curve for the solid cross section �100% relative
density� shows a mean crushing force of 71 kN. The force-
displacement curves for the remaining specimens are sandwiched
between these two results.

The folding wave length is remarkably similar for all specimens
�Fig. 10�. Furthermore, it is noted that none of the crushed sand-
wich structures exhibits the shear-folding mode which has been

reported for fibrous core materials �Mohr and Wierzbicki �7��.
This clearly indicates that the shear strength of the perforated core
materials has been sufficiently high, i.e., the core behaves in a
shear-rigid manner. In return, the normal strength of the core ma-
terial in the T-direction seems to be more important during the
crushing of sandwich structures with shear-rigid cores. Observe
that the lightest sandwich structure with a core density of 25%
shows some partial through-the-thickness crushing of the central
layer in the regions of the smallest bending radii �Fig. 10�a��. On
the other hand, core materials of higher densities can withstand
the pressure along the local T-direction while the sandwich sheet
is bent plastically.

The total mass of each specimen, m, depends on the relative
density of the core material. For the all-metal sandwich columns
with square cross sections of width B, the total mass is

m � 4Bl�C�* + 2t�� f �17�

As the data in Table 2 show, the column mass varies linearly from
273 g for the lightest column ��*=25% � to 623 g for the solid-
section profile ��*=100% �. The specific energy absorption �SEA�
is calculated as

SEA =
Pmuf

m
�18�

Upon evaluation, we find that the specific energy absorption is
approximately the same for all specimens �Table 2�. In other

Fig. 9 Force-displacement curves for the crushing of square
sandwich box columns

Fig. 10 Folded sandwich cross sections for different core densities. The encircled region in „a… highlights
the area of partial through-the-thickness crushing of the core material. The insert in „c… shows the 3D view
of the bending and stretching of the profile walls „compare with Fig. 1… as obtained from FEA; the color
indicates the equivalent plastic strain in the outer face sheet.

Table 2 Results obtained from crushing simulations

Specimen

S1 S2 S3 S4 S5

Relative core density, �* 25.0% 37.0% 46.3% 59.7% 100.0%
Mass �g� 273 329 372 435 623
Mean crushing force, Pm �kN� 32.0 38.5 42.8 44.5 70.8
Specific energy absorption, SEA �kJ/kg� 13.7 13.7 13.5 12.0 13.3
Energy absorbed by core 37% 47% 48% 45% 67%
Energy absorbed by face sheets 63% 53% 52% 55% 33%
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words, the choice of the sandwich core density has only little
influence on the specific energy absorption when keeping the total
wall thickness constant.

3 Theoretical Analysis
The purpose of the following analysis is to support the above

observations through theoretical arguments. No attempt is made to
make quantitative estimates of the mean crushing force or the
folding wavelength. The reader is referred to Santosa and
Wierzbicki �11� and Mohr and Wierzbicki �7� for the comparison
of theory with simulations and experiments.

3.1 Energy Partitioning. In their crushing analysis of sand-
wich structures, Mohr and Wierzbicki �7� identified three potential
energy absorption mechanisms: plastic bending, stretching, and
core shearing. Using the symbol tot to denote the energy ab-
sorbed throughout the formation of a single fold �such as that
depicted in Fig. 1�, we have the sum

tot = bend + stretch + shear �19�

where bend, stretch, and shear are the contributions of the afore-
mentioned mechanisms. Core shear crushing is only relevant for
shear-soft sandwich structures, whereas in the present case of
shear-rigid sandwich structures, we have shear=0. In other
words, the bending and stretching of the sandwich profile walls
�Fig. 2� are the only energy absorption mechanisms. The theoret-
ical analysis by Mohr and Wierzbicki �7� also indicates that if
shear=0, the two remaining mechanisms contribute equally to the
overall energy absorption. That is

�1� one half of the energy is dissipated by plastic bending along
hinge lines

bend = 1
2tot �20�

�2� the other half is dissipated by the stretching of the sheet
midplane in the corners of the thin-walled column �Fig. 1�

stretch = 1
2tot �21�

The energy dissipated during plastic bending, here denoted as
bend, is proportional to the fully plastic bending moment M0 of
the cell walls

bend � M0 �22�

Similarly, the energy dissipated during stretching, stretch, is pro-
portional to the fully plastic normal force, N0

stretch � N0 �23�

For the sandwich sheets, the fully plastic bending moment of the
cell walls reads

�24�

where � f and �C are the energy-equivalent yield strengths of the
face sheet and core material, respectively. Recall that C is the core
thickness, t is the face sheet thickness. Furthermore, the fully
plastic normal force reads

�25�

Using Eqs. �8�–�14�, the partitioning of the total energy between
the core and face sheets may be estimated

tot = core + face. �26�

As far as plastic bending is concerned, the core material absorbs,
core

b

core
b =

1

2
tot

1

4
C2�C

M0
�27�

while the stretching contribution, core
s , is

core
s =

1

2
tot

C�C

N0
�28�

Thus, in sum, the energy absorbed by the core material reads

core = core
b + core

s =
1

2
tot

1

4
C2�C

M0
+

C�C

N0
� �29�

Similarly, we find the energy absorbed by the face sheets, face,

face = tot − core =
1

2
tot� �C + t�t� f

M0
+

2t� f

N0
� �30�

In the following, Eqs. �18� and �19� are used to compare the
distribution of the absorbed energy with the distribution of the
mass within the sandwich structure.

3.2 Specific Energy Absorption for the Same Wall
Thickness. Conventional solid-section box structures may be con-
sidered as sandwich columns with a fictitious core material of
100% relative density, that is � f =�C and �*=1. Upon evaluation
of Eq. �29�, we find that the 1.2-mm-thick solid core absorbs
about two-thirds of the total energy

core

tot
= 66% �31�

This result is in good agreement with the corresponding numerical
simulation �67%, see Table 2�. For solid cores ��*=100% �, the
mass distribution is given by the ratio of the layer thickness to the
total sheet thickness. Here, we have C=1.2 mm and h=1.6 mm
and thus

mcore

mtot
=

C

h
= 75% �32�

In other words, 75% of the mass is attributed to the fictitious core
material, 25% to the face sheets. In sum, it may be concluded that
the partitioning between face sheets and core material is fairly
similar as far as the energy dissipation and mass are concerned.

Recall that the success of the sandwich concept in stiffness
applications relies on the redistribution of material within the
cross section such as to obtain a more homogeneous distribution
of the elastic strain energy per unit mass. For illustration, consider
the flexural stiffness per unit width, Dtot, for a sandwich sheet

�33�
Here, Ef and EC denote the Young’s moduli for the face sheet and
core material. In the case of the 1.6-mm-thick homogeneous
sheet, it is found that the core contributes about 42% of the total
bending stiffness

Dcore

Dtot
=

1

�1 + 2
t

C
�3 = 42% �34�

Observe that there is a significant difference between the elastic
strain energy �which is proportional to D� and the mass distribu-
tion �cf. Eq. �21�� in stiffness applications. Clearly, in order to
increase the flexural stiffness per unit weight, reducing the mass
of the central layer is beneficial as it will reduce the amount of
inefficiently used material within the cross section. In the case of
the crushing of box columns, the energy distribution is far more
homogeneous. Here, the contribution of the fictitious core layer to
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the total energy dissipation is almost the same as its mass percent-
age. Thus, unlike for elastic bending, there is only little room left
for optimization of the sheet cross section as far as the specific
energy absorption is concerned. This conclusion which is based
on theoretical considerations is in accordance with the simulation
results.

3.3 Specific Energy Absorption for the Same Mean Crush-
ing Force. A challenging task in automotive engineering is the
design of lightweight longitudinal rails which crush under a given
mean crushing force Pm. According to the simple analytical model
of Mohr and Wierzbicki �7�, the mean crushing force of shear-
rigid sandwich structures may be related to M0 and N0

Pm � �M0N0 �35�
Assume that the baseline design be given by a solid-section profile
��*=1� of wall thickness h=h0. The question of interest to the
automotive engineer is as to whether there may exist a sandwich
design which provides the same mean crushing force but at a
lower weight. To provide an answer, we introduce the relative
mean crushing force, p̃

p̃�C,t,�*� ª�M0�C,t,�*�N0�C,t,�*�

M̂0N̂0

�36�

with the baseline solutions

M̂0 = M0�C = h0 − 2t,t,�* = 1� = 1
4h0

2� f �37�

N̂0 = N0�C = h0 − 2t,t,�* = 1� = h0� f �38�

and the relative mass, m̃

m̃�C,t,�*� ª
C�* + 2t

h0
�39�

In a first approximation, it is assumed that the energy-equivalent
yield strength of the core material is proportional to its relative
density

�c = �*� f �40�
Furthermore, we limit our attention to sandwich constructions
with the minimum possible face sheet thickness, i.e. t= tmin
=const. This thickness is typically given by technical require-
ments such as the surface denting resistance or manufacturing
limits. When keeping the mean crushing force constant,

p̃�C,tmin,�
*� = 1 �41�

defines the relationship between the required core thickness C and
the relative core material density. Upon evaluation, we find

�� C

tmin
+ 1� +

1

4
� C

tmin
�2

�*��2 + � C

tmin
��*� =

1

4
� h0

tmin
�3

�42�

We solved Eq. �42� for h0 / tmin=1.6/0.2=8 and made use of the
solution C��*� to evaluate m̃ as a function of �*. In addition, the

required relative total wall thickness, h̃ is of interest

h̃��*� ª
C��*� + 2tmin

h0
�43�

Both the change in column mass and profile wall thickness are
plotted in Fig. 11. The basis design corresponds to the points at

�*=1, where both m̃ and h̃ equal unity. The total column mass
decreases monotonically in the relative density which reveals that
weight savings may be achieved by the use of sandwich struc-
tures. At the same time, while decreasing the mass, the total wall
thickness must be increased in order to maintain the mean crush-
ing force. From a theoretical point of view, weight savings as high
as 50% may be achieved through the use of sandwich structures in
crashworthiness applications �Fig. 11�. However, in view of prac-

tical application this conclusion must be tempered for three
reasons:

�1� The likelihood of face sheet fracture increases for thicker
profile walls. Thus, the full weight savings potential may
not be exploited due to face sheet fracture throughout
crushing.

�2� For low core densities, the assumption of shear-rigid behav-
ior is expected to break down. Instead, shear-soft crushing
may become more dominant. As discussed in Mohr and
Wierzbicki �7�, large shear deformation of the core material
reduces substantially the energy absorption of the face
sheets. Therefore, the sandwich structure would no longer
provide the same mean crushing force.

�3� The energy-equivalent flow stress of the core may be lower
than predicted by Eq. �40�. Note that the normalized stress
strain curves in Fig. 5 are usually below 1, which indicates
that the perforated core material would absorb less energy
than assumed throughout the discussion.

4 Conclusions
In an earlier study, Mohr and Wierzbicki �7� investigated the

crush behavior of shear-soft sandwich columns and found that
these absorb about 60% more energy than conventional mono-
coque structures of the same weight �wall thickness 0.4 mm�.
However, for standard passenger cars the baseline design typically
uses solid sections of about 1.6 mm wall thickness. Box columns
made of these materials provide a mean crushing force that cannot
be obtained by existing shear-soft sandwich materials. In this pa-
per, shear-rigid sandwich materials are considered as an alterna-
tive to shear-soft designs. It is found from numerical simulations
that 1.6-mm-thick sandwich columns with perforated cores ex-
hibit almost the same specific energy absorption as solid-section
profiles of the same wall thickness. This has been explained by the
observation that the energy distribution in conventional thin-
walled structures is fairly homogeneous over the wall thickness.
Thus, the basic concept of sandwich design, namely the redistri-
bution of the material within the wall cross section, does not im-
prove the specific energy absorption when the profile wall thick-
ness is kept constant.

The theoretical analysis also reveals that the weight specific
crushing performance may be improved by increasing the total
wall thickness. From a theoretical point of view, sandwich struc-
tures may be up to 50% lighter than conventional designs while
providing the same mean crushing force. However, in practice,
these gains may be considerably smaller since face sheet fracture
and core shear failure are likely to limit the performance of sand-
wich box columns with thick core materials. Therefore, as for

Fig. 11 Design for a constant mean crushing force. Relative
weight and relative wall thickness of the equivalent sandwich
structure as a function of the relative core material density „see
Eqs. „39… and „43…….
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most existing sandwich applications, the high bending stiffness-
to-weight ratio is seen as the main advantage of sandwich tech-
nology in automotive design.
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Transient Growth and Stick-Slip in
Sliding Friction
In linearly stable dynamical systems the non-normality of the corresponding linear op-
erator is known to lead to transient growth of characteristic quantities, like, e.g., energy.
For sliding friction systems it is shown in the present paper that this transient growth also
applies to the sliding velocity and that under certain conditions this mechanism can lead
to stick-slip limit-cycles in linearly stable system configurations.
�DOI: 10.1115/1.2165233�

1 Introduction
In fluid dynamics one of the most puzzling questions is still the

mechanism for transition to turbulence in systems which do not
show linear instability of the laminar state. The most prominent
representatives of this type of systems are surprisingly two of the
most well-known flow configurations: Poiseuille flow due to a
constant pressure gradient in a circular pipe and plane Couette
flow due to the shearing of parallel plates. For these flow configu-
rations transition from laminar to turbulent flow has experimen-
tally been well mapped out. From a stability point of view, how-
ever, both laminar flows are stable, which means that there is no
bifurcation sequence characterizing the initial stages leading fi-
nally to the highly irregular turbulent flow situations encountered
experimentally.

Caused by this lack of understanding starting in the 1990s a
number of investigations �e.g., Refs. �1–4�� focused on properties
of the linearized systems’ operators. It turned out that due to the
non-normality of the operators, i.e., basically the eigenvectors
cannot be chosen orthogonally onto each other, the linearized
equations do show characteristic and marked transients of, e.g.,
the system’s total energy content. As a consequence the hypoth-
esis was posed that these transients generically cause small per-
turbations to grow to such a size that nonlinearities can become
active and a transition from the laminar state to dynamical states
dominated by nonlinearity is accomplished. This route to turbu-
lence has then been discussed very controversially, since of course
strictly speaking there always is a basin of attraction for whatever
fixed point, limit-cycle, or generic solution, and the boundaries of
this basin of attraction of course cannot be correlated in a strict
mathematical sense to the rather intuitive energy-growth reason-
ing brought into discussion. On the other hand, from a practical
point of view basin boundaries are at least very hard to map out,
such that the transient growth transition can at least be taken as an
engineering approach to understanding and predicting when the
laminar flow gives way to more complex flows, up to turbulence.

Rather recently this transient growth phenomenon has been in-
vestigated in systems from fluid-structure interaction �5� and also
first investigations of transiently energy amplifying beatings in
sliding friction systems have already been conducted �6�. It is the
purpose of the present text to investigate in a generic fashion what
role transient growth plays in sliding friction systems that are
prone to mode-coupling instability �refer to Refs. �7–9� for details
on the instability mechanisms themselves�, especially in relation
to the occurrence of stick-slip limit-cycles. The present work is

organized as follows: First a minimal two-degree-of-freedom
model is set up to allow theoretical and numerical investigation of
mode-coupling instability and the corresponding transition to
stick-slip limit-cycles. Then typical properties of stick-slip limit-
cycles in the system are presented, with a special note on subcriti-
cal limit-cycles in the case of the kinetic coefficient of friction
exceeding the static one. Consequently exemplary transition to a
stick-slip limit cycle in a linearly stable, subcritical system con-
figuration is shown and discussed. Finally a technique for deter-
mining the worst case amplification of the system’s tangential
velocity component is presented.

2 The Model Problem
Since we are to investigate effects of systems which are prone

to mode-coupling instability, the simplest model to set up is a
two-degree-of-freedom lumped mass model. A graphical interpre-
tation of the model used is given in Fig. 1. The model may be
thought of as a single point mass sliding over a conveyor belt
moving with constant speed v. The mass is mainly held in position
by two linear springs Kx and Kz parallel and normal to the belt
surface. Note that Kz may be regarded as the physical contact
stiffness between the objects in relative sliding motion. Moreover,
there is another linear spring k �oriented at an oblique angle of
45 deg relative to the normal direction� leading to off-diagonal
entries in the model’s stiffness matrix. The mass is loaded with a
constant normal load Fn. For the friction an Amontons-Coulomb
model is assumed, where in the case of sliding the frictional force
Ft may be �choosing the coordinate system such that z=0 corre-
sponds to the system just first making contact to the belt� directly
derived from the compression of the vertical spring as Ft
=−�kKzz sign�1− ẋ /v� with �k as kinetic coefficient of friction
taken to be constant.

In the case of static friction the friction law reads �Ft �
��sKz �z�, where �s denotes the coefficient of static friction. As-
suming that in the course of the dynamical evolution contact al-
ways remains closed the equations of motion in the sliding case
read

�m 0

0 m
��ẍ

z̈
	 + �Cx 0

0 Cz
��ẋ

ż
	 + 
Kx +

1

2
k −

1

2
k

−
1

2
k Kz +

1

2
k��x

z
	

= �− �Kzz sign�1 −
ẋ

v
	

Fn
 , �1�

where linear viscous damping has been assumed. The equations
for the sticking case can be derived analogously by taking into
account the restraint ẋ=v. The system may be nondimensionalized
in the usual way by using a time-scale T and a length-scale l to
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obtain dimensionless variables t=Tt̂ and x= lx̂, z= lẑ. Inserting
these variables into Eq. �1�, using T=�m /Kz and l=vT and omit-
ting the carets of the non-dimensionalized variables for conve-
nience yields—again for the sliding case—the nondimensional-
ized equations

�x�

z�
	 + ��x 0

0 �z
��x�

z�
	 + � �x

2 − �2

− �2 �z
2 ��x

z
	

= �− �kz sign�1 − x��
�

	 �2�

with �x=TCx /m, �z=TCz /m, �x=T��Kx+k /2� /m, �z

=T��Kz+k /2� /m, �=T�k /2m, �=T2Fn /ml, where the prime de-
notes the derivative with respect to the new time scale and again
the equations for the sticking case can be derived analogously.

From Eq. �2� the static solution corresponding to the steady
sliding state may be calculated—by setting all temporal deriva-
tives to zero—in a straightforward manner as

x0 =
���2 − �k�

�2�− �2 + �k� + �x
2�z

2 , z0 =
��x

2

�2�− �2 + �k� + �x
2�z

2

�3�

Now Eq. �2� may be linearized around this state �3� to obtain the
linear equations valid for �small� perturbations of the steady slid-
ing state. All linear terms of Eq. �2� of course remain unchanged
and the sign�1−x�� term reduces to 1 since for small oscillations
around the steady sliding state the point mass has such a low
velocity that it does not reach the belt velocity.

�x�

z�
	 + ��x 0

0 �z
��x�

z�
	 + � �x

2 − �2 + �k

− �2 �z
2 ��x

z
	 = 0 �4�

One should note that although Eq. �4� has been obtained by a
formal linearization procedure, Eq. �4� is a full representation of
Eq. �2� except for stick-slip effects. As a consequence results of
Eq. �4� are exact solutions of Eq. �2� up to the point when stick-
slip effects take place.

In the following we will consider Eq. �4� to determine the linear
stability of the steady sliding state and to investigate transiently
growing quantities up to the point when the system nonlinearities,
i.e., in this case stick-slip, sets in. To capture the stick-slip limit-
cycles, time integrations of the piecewise linear system composed
of the equations given above and the equations for the sticking
regime are conducted. Since we are mainly interested in the fun-
damental effects, we do not intend to perform parameter studies
and for simplicity the parameters will be set to the arbitrary but
fixed values

�x = 0.02, �z = 0.04, �x = 0.9, �z = 1.1, � = 0.5,

� = − 10.0 �5�

Subsequently these values will be used for all numerical investi-
gations and it will turn out that all phenomena of the type to be
studied can be investigated with them.

3 Stability of Steady Sliding and Subcritical Stick-Slip
Limit-Cycles

This section serves to show that whenever �s��k stick-slip
limit-cycles do exist for parameter values for which the steady
sliding state is linearly stable. To better understand the setting of
the problem solutions of the homogenous equations �4� can be
obtained using the exponential ansatz

�x

z
	 = �x̂

ẑ
	exp�st�, s = � + i� �6�

which leads to a generalized quadratic eigenvalue problem. The
results of the corresponding eigenvalue analysis are shown in Fig.
2. Obviously the system has two distinct eigenvalues that ap-
proach each other with increasing �k. At �k=�k

c=0.40 the growth
rate � becomes positive for the less damped mode and for �k

	�k
c=0.40 instability results. This is the typical behavior for what

is usually called mode-coupling instability �refer to Refs. �8,9� for
further aspects of the mode-coupling instability�.

Figure 3 shows typical time-series results from time integra-
tions in the linearly unstable regime with given initial conditions.
It is clear that after a period of exponential growth sticking limits

Fig. 1 Two-degree-of-freedom model

Fig. 2 Results of eigenvalue analysis of the model system. Oscillation frequencies � „left…,
growth rates � „middle…, and beating frequency „�1−�2… /2 „right… as functions of the friction
coefficient �k.
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the amplitude of the vibration and a typical stick-slip limit-cycle
results �refer to Ref. �10� for further aspects of supercritical limit-
cycles in systems like the one described�.

Now in the case of �s��k numerically the limit-cycles can be
traced in the space of the control parameters. To characterize the
limit-cycles, the average vibrational energy, defined by E
=1/T�0

TE�t�dt with

2E�t� = �x�,z���x�

z�
	 + �x,z�� �x

2 − �2

− �2 �z
2 ��x

z
	 �7�

has been used. Figure 4 shows the results. For computational con-
venience the ratio of �s and �k has been kept constant, and for
several plausible values of this ratio the limit-cycles have been
traced into the regime of linear stability of the steady sliding state,
i.e., toward values of �k with �k
0.4. The result is very clear:
When �k=�s, limit-cycles exist only supercritically for friction
coefficients �k larger than the critical friction coefficient �k

c.
When �s��k however, stable �otherwise they would not be ac-
cessible by time-integration� stick-slip limit-cycles exist far into
the subcritical regime of �k
0.40.

First of all this result shows very impressively the limitations of
linear stability analysis: only in the case of �k=�s linear stability
analysis is able to find the separating line between existence and
nonexistence of finite-amplitude states. Whenever �s��k, the lin-
ear stability analysis of the steady sliding state does not assure the
absence of limit-cycle dynamics. Then one should note that this
result is—from an intuitive point of view—not that surprising as
one could expect. It is rather obvious that in the case of �s��k
when the sticking phase is terminated, the system has gained some
potential energy due to being held “in stick”. Even if the follow-
ing vibration dissipates some energy, as long as this energy dissi-
pation is not too large, after almost one oscillation period, stick

should be reached again. Only when the dissipation during sliding
is larger than the energy input due to the sticking phase should
steady sliding asymptotically be approached. This is of course
exactly what can be seen in Fig. 4.

Finally one should now come to the central question of the
present paper: in the subcritical regime, where the steady sliding
is linearly stable, i.e., stable with respect to small perturbations,
what could lead the system into the limit-cycle mode? How large
does an initial perturbation have to be? The answer to these ques-
tions might—at least to some extent—be found in the phenom-
enon of transient growth.

4 Transient Growth Leading to Stick-Slip
In Fig. 5 the middle and the right columns show time-

integrations of the linearized and the full nonlinear equations
�with �s=1.5�k� for initial conditions leading to maximal ampli-
fication of the initial tangential velocity component, that for maxi-
mal amplification just exceeds the belt velocity �it will be shown
in the following how this initial condition can be obtained numeri-
cally�. For the linear equations obviously for small �k the tempo-
ral evolution clearly resembles a decaying exponential. For �k

approaching �k
c=0.4 however substantial transient amplification

of the tangential velocity component can be observed. Using these
same initial conditions in the full nonlinear equations, the tran-
sient amplification leads to a stick-slip limit-cycle. This shows
clearly that even for initial conditions with rather small compo-
nents in the tangential velocity for slightly subcritical parameter
values, transient growth can lead to stick modes being activated.

To quantitatively determine the size of initial conditions that
could potentially trigger limit-cycles, a mathematical technique to
determine those initial conditions �called optimal in the following�
that yield extremal transient amplification in the tangential veloc-
ity component after a certain period of time is being derived in the
following. It should be noted that the present technique is sort of
an extension or modification of an analogous technique to deter-
mine extremal amplification of the system’s total vibrational en-
ergy content, compare Ref. �6�. In fluid dynamics transition to
turbulence has traditionally—due to the quadratic nonlinearity of
the advection term—been attributed to some sort of energy level
in the flow being reached. In the present case of stick-slip oscil-
lations however it seems much more plausible to assume limit-
cycles to set in as soon as the tangential velocity of the oscillating
mass first reaches the belt velocity, which yields a necessary con-
dition for a sticking mode being possible. Therefore the technique
has to devise a solution to the question how much the tangential
velocity can transiently grow maximally before asymptotic decay.
An approach to this problem is given in the following.

To simplify the mathematical treatment we first rewrite Eq. �4�
as a system of first order in temporal derivatives

Fig. 3 Results of direct time-integration of the nonlinear equations in the unstable regime at
�k=0.42 with „x ,z ,x� ,z�…= „0.1,0.1,0,0… as initial conditions. Both x„t…, z„t… and a phase space
plot of x� versus x are shown.

Fig. 4 Average vibrational energy E of stick-slip limit-cycles in
the subcritical regime for different ratios of �s /�k. All solutions
below �k=0.4 are subcritical.
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d

dt�
x

z

x�

z�
 = 


0 0 1 0

0 0 0 1

− �x
2 �2 − �k − �x 0

�2 − �z
2 0 − �z

��
x

z

x�

z�
 �8�

for which we will use the obvious abbreviated notation

x� = Ax �9�
from now on. Since the system is linear, homogeneous, and time-
invariant a complete set of solutions can be obtained by the usual
exponential ansatz x=x0exp�st� resulting in the eigenvalue
problem

Ax0 = sx0 �10�
The general solution of Eq. �9� may then be written down as

x�a,t� = �
i

aixi
0exp�sit� = �ta , �11�

where a is the vector of expansion coefficients defined by decom-
posing the initial conditions into the eigenvectors arising from the
eigenproblem and si and xi

0 represent eigenvalues and eigenvec-
tors, respectively. Note that for the ease of notation the temporal
evolution of the system may be represented as the product of the
matrix �t containing the eigenvectors marched forward in time
and the vector a, which for simplicity we will call the initial
conditions in the following.

Now consider a mapping that maps a given state of the system
onto the real numbers, e.g., to determine the system’s content of
vibrational energy or some other scalar at a given time

Fig. 5 Maximum amplification xamp� versus time t for different values of �k „left column…. Time integration
results for optimal initial conditions, i.e., initial conditions leading to extremal amplification of x�, scaled such
that there is a time for which x� slightly exceeds 1. Middle column: results for linearized equations, right
column: results for fully nonlinear equations.
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St = x*TNSx �12�

Here NS is a hermitian matrix �NS=NS
*T� to ensure that St is a real

quantity. Using Eq. �11� to express x, Eq. �12� may be rewritten as

St = a*T�t
*TNS�ta = a*TNS

t a �13�

where NS
t =�t

*TNS�t has been introduced to collect all temporal
dependencies.

Now it is the mathematical task to maximize—for a given time
t—the value of St by varying the initial conditions a appropriately.
Since the problem considered is linear, we of course have to add
an amplitude restraint to this optimization task. For that purpose
we additionally require a unit magnitude of the initial vibrational
energy Et at t=0, i.e., E0=1, where Et can of course again be
expressed in the form of a scalar product as Et=x*TNEx. Formally
the optimization task then reads

Smax
t = max

a
�St − ��E0 − 1�� = max

a
�a*TNS

ta − ��a*TNE
0a − 1��

�14�

where the Lagrange parameter � has been introduced to take the
restraint E0=1 into account. This optimization problem is obvi-
ously equivalent to the generalized eigenvalue problem

NS
ta = �NE

0a �15�

If NE
0 can be inverted, the problem may be transformed into the

standard eigenvalue problem

�NE
0�−1/2NS

t�NE
0�−1/2b = �b �NE

0�1/2a = b �16�
The eigenvector corresponding to the largest eigenvalue will then
give those initial conditions �“optimal initial conditions”� which
yield maximal values of St after the specified time span t and the
eigenvalue itself gives nothing but the ratio of St and E0, as can
readily be seen from Eqs. �15� and �16� when the eigensolutions
are put in. If E0 is taken to be of unit amplitude then the eigen-
values of course just give directly the values of St.

After we have now set up the mathematical framework for de-
termining optimal initial conditions for general mappings �12�, we
will subsequently consider the specific mappings yielding the in-
stantaneous total vibrational energy Et, as defined in Eq. �7�, and
the square of the instantaneous tangential velocity

2NE = 

�x

2 − �2 0 0

− �2 �z
2 0 0

0 0 1 0

0 0 0 1
�, NS = 


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0
� �17�

Exemplary results are shown in the left column of Fig. 5. xamp�
here denotes the maximal values that the tangential velocity can
reach at a given time t, assuming that the initial condition at t
=0 did have unit amplitude in vibrational energy E0 and that the
initial conditions were “optimal”. It turns out that for kinetic fric-
tion coefficients �k smaller than about 0.2, xmax� �t� decays mono-
tonically over time, whereas when �k approaches the border of
instability at �k

c there is transient growth in xamp� before asymptotic
decay; in these cases the maximum value of xamp� is reached at a
certain time tmax and Fig. 6 shows these overall maximal values
max�xamp� � as a function of the kinetic friction coefficient �k. It
shows that for �k
0.2 the potential tangential velocity has its
largest value for t=0 and decays for larger times. When �k ap-
proaches �k

c however, the maximal tangential velocity is up to a
factor of 3.5 higher than the tangential velocity in the initial con-
dition. This result conforms well to the results from direct time-
integrations corresponding to “optimal initial conditions”.

5 Summary and Conclusions
First of all it has been shown that in sliding friction systems

with friction laws of the Amontons-Coulomb type subcritical

stick-slip limit-cycles do exist when the static friction coefficient
exceeds the kinetic one, i.e., even though a linear stability analysis
of the steady sliding state indicates system stability, stable limit-
cycles do exist. This observation alone has significant implications
for the application side: when the borderline between steady slid-
ing and stick-slip limit-cycle dynamics has to be determined, in
the described cases the existing bistability of solutions has to be
taken into account. A linear stability analysis of the steady sliding
state alone does not yield sufficient conditions for the nonexist-
ence of stick-slip. In fact the full nonlinear dynamics has to be
taken into account.

Next it has been shown that for subcritical parameter combina-
tions transient growth of small initial conditions can lead to strong
amplification of the inherent tangential velocity. When this tan-
gential velocity reaches the belt velocity, typically stick-slip limit-
cycles are initiated. The given mathematical technique to deter-
mine maximal amplification of the tangential velocity, given an
initial condition with unit amplitude vibrational energy, can there-
fore be of substantial help in judging if the system will
eventually—due to the permanent presence of disturbances evolv-
ing in time—end up in a stick-slip limit-cycle, even though the
steady sliding state is linearly stable. It turns out that by calculat-
ing the maximal amplifications as a function of the control param-
eters, regimes with and without transient growth can be identified.

At this point a comment on the relation of the present approach
to the approach of a basin of attraction seems appropriate. Of
course strictly speaking the present approach is rather informal. In
fact each attractor, i.e., also the stick-slip limit-cycle considered
here, has a basin of attraction. Therefore for all the initial condi-
tions considered, strictly speaking one would only have to check
whether the initial condition is within the basin of attraction; then
of course stable limit-cycle dynamics will be reached asymptoti-
cally. From a practical point of view however the boundaries of
basins cannot usually be mapped out, merely due to the dimen-
sionality of the system’s phase space. It is this problem that might
make the present approach useful to engineering applications: al-
though the transient amplification up to the sticking condition will
of course always remain a necessary condition for the onset of
stick-slip only, nevertheless an investigation of the strength of the
temporal growth might give valuable indications, e.g., with re-
spect to system design.

Future work on the topic should therefore focus on the follow-
ing fields: first of all experimental evidence and plausibility
should be gained for stick-slip oscillations excited through tran-
sients. Especially since the approach as a whole is somewhat heu-
ristic, the experiment should serve as the best test on the possi-
bilities and limitations of the approach. In addition a more
conceptual investigation should take into account the stochasticity
of the ubiquitous perturbations �i.e., noise� and focus on the prob-
abilities for reaching stick-slip limit-cycles in the spirit of a sto-
chastically excited first-time-transit problem, complicated through

Fig. 6 Maximum amplification of x�, max„xamp� … versus kinetic
friction coefficient �k
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the phenomenon of transient growth. Here the basic question has
to be: how long does it take, given a certain noise level or quality,
to reach stick-slip through transient growth in subcritical param-
eter situations. After this experimental and conceptual work it
should become more clear, whether the techniques developed in
the present paper might—especially due to the low numerical ef-
fort necessary—form an attractive tool for the everyday engineer-
ing application in the context of friction self-excited oscillations.
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Complex Flow Dynamics in Dense
Granular Flows—Part I:
Experimentation
By applying a methodology useful for analysis of complex fluids based on a synergistic
combination of experiments, computer simulations, and theoretical investigation, a model
was built to investigate the fluid dynamics of granular flows in an intermediate regime
where both collisional and frictional interactions may affect the flow behavior. In Part I,
the viscoelastic behavior of nearly identical sized glass balls during a collision have been
studied experimentally using a modified Newton’s cradle device. Analyzing the results of
the measurements, by employing a numerical model based on finite element methods, the
viscous damping coefficient was determined for the glass balls. Power law dependence
was found for the restitution coefficient on the impact velocity. In order to obtain detailed
information about the interparticle interactions in dense granular flows, a simplified
model for collisions between particles of a granular material was proposed to be of use
in molecular dynamic simulations, discussed in Part II. �DOI: 10.1115/1.2165234�

1 Introduction
Complex fluids refer to those fluids that do not exhibit simple

fluid mechanical behavior. In contrast, simple fluids are fluids
with a straightforward description, including many common fluids
such as water, which may all be described quite elegantly with the
same equation �1,2�. The understanding of complex fluid flows is
important both from a fundamental and industrial point of view.
Complex fluids comprise a rich variety of systems; including
granular materials, porous media, fractures, colloidal suspensions,
surfactant mixtures, polymeric liquids, bimolecular assemblies,
electro-hydrodynamics flow, and many others.

Collisions between grains in a granular flow, which have been
studied since Newton’s time, still pose many difficulties and un-
answered questions. One of the simplest of these problems is the
binary collision between two monosized, spherical grains that in-
volves repulsive rigid elastic interactions as well as dissipative
frictional contacts. A binary collision represents the simplest of
the multibody interactions in a dense granular flow. The frictional
interaction represents the most fundamental difference between a
granular system and a molecular system. Note that even a highly
polished grain has surface roughness on many different length
scales.

Many diverse examples of granular flows exist, ranging from
flow of grains in a silo �3� to planetary rings �4�. Flow dynamics
of granular materials may be categorized in the complex fluid
families. As an example, in these systems solid-like and fluid-like
qualities may exist, side-by-side �5�.

This behavior could be due to a complex nonlinear elasticity
exhibited collectively by an aggregate of grains that governs the
flow properties of the system.

In this light, developing realistic models for the granular colli-
sions, by which slow collisions for rough as well as smooth grains
can be described, would be invaluable in the understanding of the
physics of deformation and flow of granular materials, especially
in industrial systems.

A contact force model such as F=k��+c��d� /dt is often
adopted to capture the key features of granular inelastic interac-
tions when the impact velocity is much less than the speed of
sound in the grain material �6�. In discussing the aforementioned
expression, it has been assumed that the elastic restoring force is
proportional to the displacement, and the dissipative force is pro-
portional to the velocity.

In light of the above discussion, the exponent � was found to be
3/2 �7,8�, consistent with that obtained from Hertzian quasi-static
force �9�. However, the �1/4 dependence of contact force on vis-
cous dissipation observed in experiments �10� appears to be at
odds with the �1/2 scaling predicted by model developed in Refs.
�7,8�. This observation might question justification for making the
assumptions that the contact forces developed in solids such as
that used in Ref. �10� are the sum of two terms, one proportional
to the strain and the other proportional to the rate of change of
strain with �1/2 scaling factor.

Brilliantov et al. �8� compared the computed values of the nor-
mal restitution coefficients with those measured by Bridges,
Hatez, and Lin �4�, at different impact velocities. It has been
shown in Ref. �8� that excellent agreement with the measurement
data �4� can be obtained, given that a model with a spring and
dashpot in parallel is used to describe viscoelastic behavior of the
ice particles with little or no ductility. Note that the model predic-
tions could be improved using a larger value than 1/2 for � with
the exponent of the contact force model given above.

The numerical results reported in Ref. �8� suggested a nonlinear
dependence of the coefficient of restitution on the impact velocity,
consistent with the findings of Bridges et al. �4� and Gugan �11�.
Surprisingly, the aforementioned important feature of inelastic
collisions remained completely undiscovered by Foester
et al. �12�.

Note that the aforementioned model for viscoelastic materials is
quite useful in describing how internal friction may arise from
processes of a viscous nature. However, it is too simplified to be
quantitatively useful to predict a collision in which a number of
different relaxation processes may take place simultaneously, in
solids. Hence, a more complicated model has to be considered in
order to predict collisions of the real solids having a continuous
spectrum of relaxation times.

The objective of the current work is to provide an overview of
impact analysis useful for developing a practical methodology for
large-scale three-dimensional systems. To measure the viscoelas-
tic coefficients of glass particles the classical collision experiment
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script received November 11, 2005. Review conducted by K. M. Liechti. Discussion
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal
of Applied Mechanics, Department of Mechanical and Environmental Engineering,
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be
accepted until four months after final publication in the paper itself in the ASME
JOURNAL OF APPLIED MECHANICS.
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known as Newton’s cradle was used. These quantities cannot be
measured directly; therefore, a numerical approach based on finite
element methods was developed to analyze collision processes in
the Newton’s cradle device. A numerical model based on Boltz-
mann’s approach for viscoelastic solids was used to investigate
the properties of impact processes, including the estimation of the
viscoelastic coefficients. In addition, the results obtained were
used to develop a simplified but more realistic model for the col-
lision of grains, capable of reproducing the observed behavior of
granular flows discussed in the subsequent paper.

2 Experimental Studies
Experimental setup. As stated in the proceeding section, granu-

lar materials may be treated as a collection of inelastic hard
spheres. There are no attractive forces between particles but in
each collision energy is lost. One of the simplest of these prob-
lems is the binary collision between spherical grains, which in-
volves repulsive, rigid, elastic interactions as well as dissipative
frictional contacts. A binary collision represents the simplest of
the multibody interactions in a dense granular flow.

One aim of this study is to further investigate collisions be-
tween inelastic spherical particles. To this end the classical colli-
sion experiment known as Newton’s Cradle was used, as shown
schematically in Fig. 1. As illustrated in Fig. 1, two nearly iden-
tical, spherical glass particles of mass 13.3�10−3 kg were ar-
ranged by suspending each particle from a frame using two very
thin threads. In order to ensure the elimination of the rotation of
the balls their centers of mass were aligned very carefully. By
releasing the first ball from an elevation an impact was generated
which was captured using a high speed digitalized video camera
�JVC GR-DVL9800 with a recording speed of 100 Hz� connected
to a personal computer. Reflective tapes were used to mark the
center of each ball. Note that it is important to have very bright,
focused light sources closely aligned with the camera axis. Using
the acquired video images the dropping height and the corre-
sponding inclination angle with respect to the equilibrium position
of the first ball, �, and the maximum post impact height attained
by the other ball as well as its corresponding inclination angle, �,
were determined.

To generate collisions at different impact velocities, the experi-
ments were repeated using different elevations for the first ball.
Moreover, to examine the effect of particle size on collision, the
aforementioned balls were replaced by the lighter glass particles

of mass 5.61�10−3 kg and similar experiments were conducted to
determine the normal coefficient of restitution whose magnitude
may be approximated by

en = 2
sin �/2

sin �/2
− 1 �1�

In this case the impact velocity is given as Vimp=2�gl sin � /2.
In the first set of experiments, the sphere has a diameter of 22 mm
and its physical properties as well as chemical compositions �pro-
vided by Sigmund Linder GmbH, Germany� are listed in Table 1.
The diameter of lighter glass balls used in the second set of ex-
periments was 16.5 mm. The sample results presented in Table 2
represent the degree of plasticity of the collisions in terms of the
impact velocity. Note that values of en=1 and en=0 denote the
idealized cases of perfectly elastic and plastic impact, respec-
tively. The present results suggest a nonlinear dependence of the
coefficient of restitution on the impact velocity, consistent with
the findings in previous attempts �4–11�.

Further examination of the impact problem studied in this sec-
tion requires a quantitative description of the brittle behavior of
glass particles. In the following section, a viscoelastic model will
be presented characterized by a time dependent relation between
stress and strain. Models for glass balls may be constructed by
suitable combinations of spring and dashpots, where the dashpots
introduce a viscous type resistance associated with internal fric-
tion in solids.

Note that neither the Maxwell nor Kelvin model represents the
behavior of most viscoelastic materials, including the glass balls
used in Newton’s cradle device illustrated in Fig. 1. For example
the Maxwell model �13� predicts that the stress asymptotically
approaches zero when the strain is kept constant. On the other
hand, the Kelvin model does not describe a permanent strain after
unloading. In this study, a second spring is placed in series with
the Kelvin model used in Ref. �8�, to develop a model of linear
viscoelastic material equivalent to a Maxwell model with a spring
in series. The schematic of the three-parameter model used in this
study is shown in Fig. 2.

The success of theoretical approach such as that discussed in
Ref. �8� is limited for nonlinear problems because of difficulties of
analysis. However, a numerical approach has become popular be-
cause collision processes can be studied under realistic situations,
where the action of loads suddenly applied to a body such as a

Fig. 1 Schematic of apparatus used for the Newton’s cradle
experiments. The balls used were nearly identical, spherical
glass particles suspended from very thin threads. Here, the po-
sitions of the balls before, at, and after a collision are shown.

Table 1 Material properties

Material Properties Symbol Value

Glass Elastic modulus E 6.3�1010 Pa
Density � 2390 kg/m3

Poisson’s ratio � 0.244
Chemical compositions SiO2

66.0%
Nd2O 16.0%
CaO 7.0%
Al2O3

5.0%
Bi2O3

3.0%

Table 2 Measured values for the coefficient of restitution at
different impact velocity, for a glass ball with a diameter of
22 mm

Vimp �m/s� Coefficient of restitution

0.554 0.868
0.599 0.866
0.610 0.852
0.682 0.836
0.896 0.827
0.954 0.816
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spherical particle may be propagated in a wave-like manner and
its reflection at bounding surfaces could lead to vibrations. In
addition, it is easy to control situations to investigate the proper-
ties of impact processes as well as to analyze nonlinear problems
as detailed in the following.

3 Analysis
Rigid body motion in Newton’s cradle. As depicted in Fig. 1,

two nearly identical, spherical glass particles of mass m are ar-
ranged by suspending each particle from a frame using two very
thin threads. The first glass ball was pulled aside and allowed to
swing as a pendulum, resulting in its colliding with the second
glass ball. The motion of the moving glass ball having diameter 	
and mass m suspended from a weightless thread with a fixed
length l in the field of gravitation, and subject to a drag force may
be described as follows.

Suppose the mass is given a displacement 
0, �0 in a spherical
coordinates system �r ,
 ,�� from the equilibrium position,
namely,
eq=�, �eq=0 and then released. The mass then ap-
proaches the equilibrium position with acceleration due to the
action of resultant of the force of tension of thread T and the
forces of gravity mg, and drag D due to air resistance. The com-
ponents of acceleration of the glass ball in a Cartesian coordinates
system �x ,y ,z� are given as �14�

Ax = − �l
̇2 + l̇2�sin 
 cos  + �l
̈�cos 
 cos  − �l̈�sin 
 sin 

− 2l
̇�̇ cos 
 sin  ,

Ay = − �l
̇2 + l̇2�sin 
 sin  + �l
̈�cos 
 sin  + �l̈�sin 
 cos 

+ 2l
̇�̇ cos 
 cos  ,

Az = − �l
̇2�cos 
 − �l
̈�sin 
 . �2�

Likewise, the components of resultant of the tension, gravity, and
drag forces acting on the ball in the Cartesian coordinates system
�x ,y ,z� are given as

Fx = − Tp sin 
 cos  −
�

8
� f�	l�2�
̇2 + �̇2 sin2 
�1/2

� �
̇ cos 
 cos � − �̇ sin 
 sin ��CD

Fy = − Tp sin 
 sin  −
�

8
� f�	l�2�
̇2 + �̇2 sin2 
�1/2

��
̇ cos 
 sin � + �̇ sin 
 cos ��CD

Fz = − mg − Tp cos 
 +
�

8
� f�	l�2�
̇2 + �̇2 sin2 
�1/2 � �
̇ sin 
�CD

�3�

where CD represents the coefficient of drag for a spherical particle
defined as �15�

CD =
24

Rep
�1 + 0.1862 Rep� +

0.4373 Rep

7185.4 + Rep
�4�

Therefore, using the classical mechanics theory the equation of
motion of the single pendulum as illustrated in Fig. 3 may be
written as


̈ = sin 
�−
Dz

ml
+

g

l
� + cos 
�Dx

ml
cos � +

Dy

ml
sin � + �̇2 sin 
�

�5�

�̈ = − csc 
�2�̇
̇ cos 
 −
Dy

ml
cos � +

Dx

ml
sin ��

The parameters Dx, Dy, and Dz in Eq. �5� are given as

Dx = −
�

8
� f�	l�2�
̇2 + �̇2 sin2 
�1/2

��
̇ cos 
 cos � − �̇ sin 
 sin ��CD

Dy = −
�

8
� f�	l�2�
̇2 + �̇2 sin2 
�1/2

��
̇ cos 
 sin � + �̇ sin 
 cos ��CD �6�

Dz =
�

8
� f�	l�2�
̇2 + �̇2 sin2 
�1/2 � �
̇ sin 
�CD

Note that Eq. �5� is nonlinear and thus capable of producing cha-
otic behavior.

4 Particle Collision in Newton’s Cradle
When two spherical particles are brought into contact they

touch initially at a single point. As the particles deform, they come
into contact in the vicinity of the initial contact point over an area
that is small compared with the dimensions of the particles.

As depicted in Fig. 1, two nearly identical, spherical glass par-
ticles of mass m are arranged by suspending each particle from a
frame using two very thin threads. In order to prevent the balls
from rotating, their centers of mass were aligned very carefully.
The first glass ball was pulled aside and allowed to swing as a
pendulum, resulting in its colliding with the second glass ball.
When two spherical particles are brought into contact they touch

Fig. 2 The model consists of auxiliary spring in series with the
Kelvin model

Fig. 3 Free-body diagram of a single pendulum in a spherical
coordinates „r ,� ,�…
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initially at a single point. As the particles deform, they come into
contact in the vicinity of the initial contact point, over an area that
is small compared with the dimensions of the particles. Note that
the action of loads suddenly applied to a body is propagated from
one place to another place in a wave-like manner. Any intensive
impact loading could be accompanied by plastic deformation �16�.
This category of impact problems will be discussed briefly in the
following.

Numerical simulation of a collision in Newton’s cradle—
Elastic collisions. In the following, a numerical treatment is pre-
sented based on the Galerkin weighted residual method applied to
the governing equations and boundary conditions to develop
velocity-pressure finite element contact formulations. In order to
validate the aforementioned numerical method, first the elastic
impact of spherical particles are discussed for which analytical
solutions, such as those of Hertz, are available for conditions for
which the duration of contact is large compared to the period of
the lowest natural frequency of either spheres where the bodies
may be considered to be at the state of quasiequilibrium.

The general equations of motion in referential coordinates for
an elastic continuum in absence of body forces may be given
as �17�

�üi = 	ij,j
�el� �7�

The displacements in a fixed rectangular Cartesian coordinate sys-
tem Xj�j=1,2 ,3� are denoted by ui=xi−Xi=ui�Xj , t� with kine-
matical relations üi=� /�t2xi�Xj , t�. Equation �7� with constitutive
equation 	ij

�el�=��Ekk��ij +2GEij and geometric equations Eij

=1/2�Sij +Sji� where Sij represents the replacement gradient pro-
vide 15 equations for the 15 unknowns, comprising six stresses
	ij

�el�, six strains Eij, and three displacements ui.
The set of equations given above has to be solved for appropri-

ate boundary and initial conditions listed in the following

	ijnj = Ti�t�, on �b1

��	ij�xi
+ − �	ij�xi

−�nj = 0, on �b2

�8�
xi�Xj,0� = Xi

0

ẋi�Xj,0� = Vi�Xj�

The second condition in Eq. �8� represents the contact discontinu-
ity given along an interior boundary �b2 when xi

+=xi
−. The Galer-

kin formulation may be obtained from Eqs. �7� and �8� by using
the Gauss theorem. That is

�W =	
Vb

�üi�uidVb +	
Vb

	ij�ui,jdVb −	
�b1

Ti�uidSb = 0 �9�

This equation is the weak form of the equilibrium equations. Spa-
tial discretization in numerical analyses such as binary collision of
spheres could be typically based on a single method such as
Lagrange, Euler, a mixture of Lagrange and Euler �arbitrary
Lagrange Euler�, or mesh-free Lagrangian �smooth particle hydro-
dynamics�. For the numerical simulation of the binary collision of
spheres, each of the different solutions mentioned above has
unique advantages and there is no single ideal numerical method
that would be appropriate to the various regimes of a collision. In
the present study the Lagrange method of space discretization is
used, for which the numerical grid moves and deforms with the
material.

The advantages of the aforementioned method are computa-
tional efficiency and the ease of incorporating complex material
models. The disadvantage of the method used is that the numerical
grids may become severely distorted in an extremely deformed
region. This can cause adverse effects on the integration time step
and accuracy. However, these problems can be somewhat over-
come by applying numerical techniques such as rezoning.

The spatial discretization is performed by representing the
fields using computational points in space connected with each
other through grids �18�. Thus

ui�Xj,t� = 

p=1

N

p��,�,��ui
p�t� �10�

Using M elements, the discretized form of Eq. �10� becomes



k=1

M �	
Vk

�üi�i
kdV +	

Vk

	ij
k �i,j

k dVb −	
�b1

Ti�i
kdS� = 0

�11�

where �i
k= 1 ,2 , . . . ,N�i

k. These lead to matrix form of Eq.
�11� given as



k=1

M �	
Vk

��t�adV +	
Vk

Bt	dV −	
�b1

�tTdS�
k

= 0 �12�

To demonstrate the application of the above-detailed numerical
method, numerical simulations of the impact problem of two
equally sized, smooth spheres are illustrated in Fig. 4�a�. The
sphere has a diameter of 22 mm and its physical properties as well
as chemical compositions �provided by Sigmund Linder GmbH,
Germany� are listed in Table 1. In the case illustrated in Fig. 4, the
right sphere collides with the left one, which is initially stationary,
at a velocity of Vimp=0.56 m/s. The impact velocity was found
solving Eq. �5� for the moving sphere. Due to symmetry only one
half of the circular cross section of the symmetry plane passing
through point of contact is modeled. The grid consists of 5456
triangular axisymmetric elements comprising a total of 2940
nodes. As illustrated in Fig. 4�b�, in order to assure the accurate
modeling of the collision the mesh is built sufficiently fine in
regions of high gradients of stresses and strains. A rezoning
mechanism is applied to the Lagrange to eliminate the elements
that become severely distorted or tangled. Using time step of
5�10−11 s, the unsteady calculations were performed until the
velocity of the spherical glass ball on the left reached to that of the
right ball before the collision. Figures 4�c�–4�f� represent a
gradual change in the velocities of balls, from initial to terminal
velocity states during the collision process. The numerical model
was further verified by comparing its output with the analytical
results of the Hertz theory. The verification included the maxi-
mum contact pressure, and the collision time. The variations of
the contact pressure experienced by a node located at the point of
initial contact as a function of time for several impact velocities
are depicted in Fig. 5. As illustrated in Fig. 6�a�, the difference
between the numerical and analytical results for the maximum
contact pressure was always less than 3.5%, which increases with
the impact velocity. Since the impact does not produce a perma-
nent deformation, the law of conservation of mechanical energy
requires that the ratio of final to initial relative velocity compo-
nents of colliding balls in the direction. The numerical results
were recorded after every 10−6 s. In this light, the small difference
between the numerical and analytical results for the collision time,
as illustrated in Fig. 6�b�, may be an effect of the limit of uncer-
tainty of numerical calculations. Using Arbitrary Lagrange Euler
�ALE� grids did not reduce the difference, illustrated in Fig. 6.
Note that ALE method of space discretization is a hybrid of the
Lagrange and Euler method that allows redefining the grid con-
tinuously in arbitrary, as well as predefined ways, as the calcula-
tion proceeds. This method effectively provides a continuous re-
zoning by which the elements that become highly distorted can be
eliminated.

Another verification of the model was carried out by refining
the mesh in the area of contact. However, by doubling the number
of nodes in the vicinity of the area of contact, the largest differ-
ence in the contact pressure was found to be less than 2%. These
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verifications establish the validity of the numerical model with the
mesh, depicted in Fig. 6�b�, to study the collision processes in
colliding spherical particles.

During impact, due to elastic deformation, the centers of the
spheres approach each other resulting in a compressive stress,
whose distribution in the vicinity of initial point of contact is
demonstrated in Fig. 7�a�. After the instant of maximum compres-
sion whose stress distribution is illustrated in Fig. 7�b�, the
spheres expand and a restitution period begins during which the
compressive stress in the contact area decreases as shown in
Fig. 7�c�.

The restitution period is lasting to the instant of separation at
which stresses are practically removed as depicted in Fig. 7�d�.

Since the particles are perfectly elastic and frictionless, and
energy absorbed in wave motion is neglected, the deformation is
perfectly reversible. From Fig. 8 it can be seen that the stresses
decrease rapidly with increased distance from the area of contact.
In addition, from Fig. 7 the contact area and its radius may be
roughly estimated �19�.

In order to solve the elastic-plastic contact of spherical balls, a
yielding criterion should be adopted, such as the von Mises crite-
rion �20�. It is possible to present the yield condition as a function
of the stress deviator invariants. Hence, it is useful to demonstrate

Fig. 4 Three-dimensional view of a collinear collision of two identical spheres.
„a… The left sphere with velocity of 0.56 m/s approaches the right sphere, which
is initially stationary. To obtain better visualizations one-fourth of the particles
are removed. „b… Grid used in the numerical treatments. Note that finer meshes
are used in the vicinity of contact area where the gradient of stresses and
strains are high. „c…–„f… Time evolutions of the local velocities of the balls dur-
ing the collision process. „g… Variations of velocities of center of mass of the
particles with time. Here velocity and time are normalized with impact velocity
and collision time, respectively. Squares and diamonds represent the right side
and the left side particles, respectively.

Fig. 5 Variations of the component of normal stress �yy „con-
tact pressure… of the node located at the point of initial contact
as a function of time. Six point star, five point star, diamond,
box, left triangle, right triangle, inverted triangle, triangle, aster-
isk, and circle represent collisions of impact velocities of 0.01,
0.03, 0.05, 0.07, 0.5544, 0.9538, 2.5, 3.5, 4.0, and 5.0 m/s,
respectively.
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the distribution of the effective stress, defined as 	eff=�3��, in
the area of contact. Here, �� represents the second invariant of
the deviatoric stress tensor. Figure 7�b� presents the contour plot
of 	eff at the end of approach period when the interference is the
largest. From Fig. 8�b� it can be seen if a transition from the
elastic to the elastic-plastic regime occurs at moderately high ve-
locity impacts such as discussed above, it is likely that an elastic

core remains locked between the plastic regions where the highest
effective stress, 	eff, is located. The present model may offer an
accurate numerical solution for the inelastic impacts, which will
be discussed in the following.

Inelastic Collisions. Here, a three-parameter model, namely two
springs with one dashpot, was used in order to generalize the
numerical approach described in the preceding section. The sche-
matic of the three-parameter model is shown in Fig. 2.

One of the central problems in devising descriptions of vis-
coelastic materials is the question of how to describe the manifes-
tation of both elastic and viscous effects. Mase �20� suggested that
in developing the three-dimensional theory for viscoelasticity, dis-
tortional and volumetric effects must be treated independently. To
this end, the stress tensor may be resolved into deviatoric and
spherical parts, given as

	ij = Sij + 1
3�ij	kk �13�

where Sij =�0
t s�t− t��deij /dt�dt�, and the relaxation function used

in the model is given by s�t�=G�+ �G0−G��e−t/�. Note that in
the present study the so-called summation convention is used.
Moreover, it is assumed that the stress and strain vanish for times
−�� t��0.

The volumetric part of stress tensor would have a similar form,
but with different relaxation functions. Therefore, the governing
filed equations for an isotropic, viscoelastic continuum body such
as the glass balls used in Newton’s cradle experiments of the
preceding section take the form of

�üi = �	ij�,j

�ij = �ui,j + uj,i�/2 �14�

Ṡij + Sij/� = �G0 + G��ėij + G�eij/�

The first equation in Eq. �14� is the equation of motion, the
second equation is strain-displacement expressions, and the third
equation is the stress-strain relation.

To demonstrate the use of above-mentioned viscoelastic model,
a numerical simulation of an impact problem of two spherical
glass balls, whose physical properties are listed in Table 1, is
conducted using the Galerkin weighted, residual method described
in the preceding section. Consider the collision of two spherical
balls, as depicted in Fig. 9, of diameter 	p=2.2 mm at a point on
the line connecting their centers of mass. In this case, a translating
smooth sphere on the left with velocity 0.954 m/s collides with
the stationary smooth sphere on the right.

The value of G0 is found from that of Young’s modulus pre-
sented in Table 1 using an expression given for shear modulus,
namely G0=E /2�1+��=2.53�1010 kg/ms. Suggestion on select-
ing the long-time shear modulus, G�, was made by the represen-
tative of Sigmund Linder GmbH, Germany. Apparently, one can
use G0 /G��4. Hence, the value of G� is set to
0.61�1010 kg/ms. Moreover, an initial guess was made for the
relaxation time, which is an unknown in the present model. Gogun
�2000� �11� reported that the collision time for a case in which
about 40% of the kinetic energy is lost on collision was slightly
longer than that predicted by Hertz theory for an elastic collision
with the same impact velocity. Using the measured value for the
coefficient of restitution listed in Table 2, namely e=0.816, the
trial value for the relaxation time may be found to be �
=1.676�10−5 s.

Figure 9�b� illustrates the variations of kinetic energies of the
spherical balls, shown in Fig. 9�a�, as a function of time for �
=1.676�10−5 s. In this case, the value of e=0.887 is found at the
impact velocity of Vimp=0.954 m/s, which is larger than that re-
ported in Table 2. Note that the viscoelastic model used in this
study captures the essential idea that the response to slow distur-
bances is that characteristic of a viscous fluid. In light of this, the
viscous type resistance increases by selecting a shorter relaxation

Fig. 6 „a… Maximum of contact pressure ��yy� at the initial point
of contact as a function of impact velocity. Stars and triangles
are the analytical and the numerical results, respectively. „b…
Variations of collision time with impact velocity. Crosses and
squares represent the analytical and the numerical results.

Fig. 7 Contour plots of �yy for two spheres during a collinear
impact. „a… At the middle of compression period. „b… At the
maximum compression. „c… At the middle of restitution period.
„d… At separation. The impact velocity is 0.55 m/s.
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time compared with the initial guess of 1.676�10−5 s. The cor-
rect value for the relaxation time can be determined using a trial
and error approach. From Fig. 9�c� it can be seen that by using a
value of 9.87�10−6 s for the relaxation time, the calculated value
of the coefficient of restitution approaches that measured by using
the Newton’s cradle device at an impact velocity of 0.954 m/s. In
this case, the balls lost about 20% of their kinetic energy at the
impact velocity of 0.954 m/s, as illustrated in Fig. 9�c�. A detailed
comparison of the profiles of kinetic energy of particles in a par-
tially elastic and an elastic collision is illustrated in Fig. 9�c�. Note
that for the above-mentioned collision, Tc is one order of magni-
tude larger than the relaxation time, namely Tc /��7.

Figure 9�d� presents the time evolution of 	yy for a node lo-
cated at the initial point of contact of the viscoelastic balls, as well
as that for an elastic collision with the same impact velocity for
comparison. From Fig. 9�d� it can be seen that a considerable part
of the initial kinetic energy is dissipated for the case of inelastic
collision in the restitution period. In this case, the contact pressure
vanishes earlier than that of the corresponding elastic collision.
Moreover, the numerical results presented in Fig. 9�d� imply that
the maximum value of contact pressure at the point of initial con-
tact decreases as the dissipation increases. From results presented
in Fig. 9�d� it can also be seen that the dissipation could occur
during the processes of conversion of energies in both approach
and restitution periods. However, it appears that the dissipation is
more enhanced in the latter period.

The deformation history as shown in Fig. 9�e� appears to be
very similar to that presented by Goldsmith �21�, as an assumed
scenario for deformation history in Stereomechanical impacts.
The only difference is that the calculated time for the approach
period is shorter than that proposed by Goldsmith, as depicted in
Fig. 9�f�. The results presented in Fig. 9�e� imply that the energy
dissipation can also occur during approach period, which suggests
that the elastic potential energy function used by Hertz might be
valid only for the short period of time in the beginning of ap-
proach period. As illustrated in Fig. 9�e�, the approach period
followed by a somewhat longer restitution resulting the collision
time, which is surprisingly close to that of elastic collision, where
the difference may be at the limit of numerical errors.

Note that it appears that the results presented in Fig. 9�e� pre-

dict a shorter restitution period for partially elastic impact com-
pared to that of elastic impact at the same impact velocity. The
reason is that at the end of restitution period for a partially elastic
impact is the instant of separation, which is not exactly the same
as the instant at which the contact pressure at the point of impact
diminishes. Note that for a perfectly plastic collision no separation
may be observed even though the contact pressure at the point of
impact diminishes at the end of the approach period.

As evidenced by Fig. 9�e�, a small residual deformation appears
to exist at the instant in which the contact pressure at the point of
impact diminishes for a partially elastic collision.

Using the numerical model described in the above general be-
havior of the coefficient of restitution, e, as a function of impact
velocity Vimp is predicted for the range of the impact velocity from
5 mm/s to 3 m/s. The results can be qualitatively divided into
two categories. At relatively large impact velocity, the coefficient
of restitution changes little over a wide range of impact velocity.
Below Vimp�10 cm/s, the coefficient of restitution increases rap-
idly with decreasing the impact velocity.

The results presented in Fig. 10�a� are consistent with the clas-
sical theory of nearly elastic deformation discussed in Landau and
Lifshitz �22� at the low velocity limit. The present results suggest
that at a finite and sufficiently small velocity the coefficient of
restitution approaches unity. Note that the calculated value for the
coefficient of restitution at impact velocity of 5 mm/s is found to
be 0.997. As illustrated in Fig. 10�b�, the numerical results pre-
sented in Fig. 10�a� can be fitted with a power law

en = 1 − 0.74904Vimp
*0.1

+ 4.4873Vimp
*0.2

− 9.7068Vimp
*0.3

+ 9.11395Vimp
*0.4

− 3.3367Vimp
*0.5

�15�

where Vimp
* is dimensionless impact velocity.

The present numerical model provides a route from the details
of physical properties of the system to macroscopic properties of
experimental interest, such as coefficient of restitution. Note that
as well as being of academic interest, the results provided in the
section are technologically useful. It may be difficult to carry out
experiments at very low or very high impact velocities, while a
numerical simulation of an impact at any impact velocity would

Fig. 8 Contour plots of „a… �yy and „b… �eff „Von Mises stress… at the maximum compression of a collision with an impact
velocity of 5 m/s
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be perfectly feasible. A wide range of physical phenomena, from
elastic contact between rough surfaces to elastic-plastic impact,
may be studied reliably using the generalized form of the pro-
posed numerical model in this section.

One limitation of the scheme presented above is the relatively
small number of particles that can be studied in a system. In this
light, a more simplified scheme would be required to treat the
interactions between a large numbers of glass balls in a system,
such as a spinning bucket of sand. To this end, using the detailed

results obtained in this section a simplified model for collisions
between particles will be presented in the following section to be
of use in molecular dynamic type simulations.

5 Simplified Model for Collision of Viscoelastic
Spheres

Following the Hertz theory �19�, the binary collision between
two monosized, spherical particles in Fig. 9�a�, involves repulsive

Fig. 9 „a… Three-dimensional view of a collinear collision of two identical glass balls used in
experiments. „b… Normalized kinetic energy for the balls versus time. The relaxation time is set
to �=1.676Ã10−5 s. The solid and dashed lines represent the viscoelastic and elastic collision,
respectively. Ktotal is the total kinetic energy of the system. „c… The same as „b… but using a
value of 9.87Ã10−6 s for the relaxation time. „d… Time evolution of contact pressure experi-
enced by the node located at the initial point of contact. Box and triangle represent elastic and
viscoelastic collision, respectively. „e… Numerical results for deformation history of a node
located at the initial point of contact in a collision between two glass balls. Spheres and
squares represent elastic and viscoelastic collision, respectively. „f… Typical deformation his-
tory proposed by Goldsmith †21‡.
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rigid elastic interactions as well as dissipative plastic contacts. As
stated earlier, a contact force model such as F=2E /3�1
−�2�	p

1/2�3/2+c��d� /dt �in which the first term represents the
elastic interactions and the second term models plastic contact� is
often adopted to capture the key features of inelastic interactions
�7,8�.

Employing dimensional analysis, physical quantities can be de-
termined that significantly influence the viscous behavior of glass
balls, shown in Fig. 9�a� characterized by the coefficient c in the
expression for contact force model. Thus the coefficient c can be
expressed as

c = K�G0
2/�G0 − G��	p

1−� �16�
Combining Eq. �16� with the above-mentioned expression for the
contact force, an expression for � may be found by solving the
following ordinary differential equation

d2�

dt2 = − �2E/3m�1 − �2��	p�3/2 − K��G0
2/m�G0 − G���	p

1−���d�/dt

�17�
Applying the physical properties listed in Table 1, Eq. �17� was

integrated using fourth- and fifth-order embedded formulas from
Dormand and Prince �23� with �t=3�10−9 s. The initial condi-

tions for Eq. �17� are ��0�=0 and �̇�0�=2�gl sin � /2. Given that

the coefficient of restitution is defined as en=−�̇�tc� / �̇�0�, the

value of the model parameter K in Eq. �17� can be estimated by
fitting the results of the simplified model for a binary collision
with those presented in Fig. 10.

Figure 11�a� illustrates two sets of numerical results of the co-
efficient of restitution in a binary collision of glass balls. Those
obtained using different values for the exponent � where deltas
and squares represent the coefficient of restitution as a function of
impact velocity for �=1 and �=1/2, respectively. The circles are
the experimental data as presented in Table 2. The results pre-
sented in Fig. 11�a� show that � dependence of contact force on
viscous dissipation appears to provide a better representation of
the measurements. The model can also predict the behavior of
glass balls during a collision at the low velocity limit accurately.
However, the Kelvin-type model �for which �1/2 dependence of
contact force on viscous dissipation was obtained �8�� can predict
the coefficient of restitution neither at the low nor at the high
impact velocity accurately. This observation implies that a Kelvin-
type model may not be quite appropriate to predict the glassy-type
viscoelastic behavior of glass balls during a collision.

The simplified model �17� will be tested further in the subse-
quent paper to predict the observed behavior of sand particles in a
rotating bucket. There is a need for further experimental investi-
gation of collisions to refine the simplified model �17� and to
obtain a more generalized form useful for describing a wide range
of materials.

6 Conclusions
The collisions of viscoelastic, nearly identical sized glass balls

have been studied experimentally using a modified Newton’s
cradle device. A numerical model based on finite element methods
was developed to analyze the measurement data. By employing
the comprehensive model, a better understanding of the processes
during a collision was made possible. For example, a quantity
such as the viscous damping coefficients, which is lacking in the
literature, was determined for the glass balls. Power law depen-
dence was found for the normal restitution coefficient on the im-

pact, velocity was found to be given as en=1−0.74904Vimp
*0.1

+4.4873Vimp
*0.2

−9.7068Vimp
*0.3

+9.11395Vimp
*0.4

−3.3367Vimp
*0.5

, where Vimp
*

is dimensionless impact velocity.
To obtain detailed information about the interparticle interac-

tions in dense granular flows, a simplified model based on dimen-

Fig. 10 „a… The coefficient of restitution versus impact velocity
for viscoelastic glass beads with the properties given in Table
1. Squares indicate the numerical results obtained using finite
element approach and circles represent experimental data ob-
tained using Newton’s cradle device depicted in Fig. 9„a…. „b…
The results in „a… are presented on a log-log scale. The solid
line indicates the power law „15…. Distribution of en is seen to
follow the power law distribution.

Fig. 11 The coefficient of restitution versus impact velocity for
a binary collision of viscoelastic glass beads with the proper-
ties as given in Table 1. Deltas and squares indicate the nu-
merical results obtained using simplified model „17… for �=1,
and �=1/2, respectively. Gray circles represent experimental
data obtained using Newton’s cradle device. The values ob-
tained for the parameter K for �=1 and �=1/2 are 143 and 1.67,
respectively. The Kelvin-type model for �=1/2 does not seem
to predict the behavior of glass balls during a collision at the
low velocity limit accurately.
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sional analysis has been developed for collisions between glass
particles. The model will be examined through its application to
predict unexplained hydrodynamic phenomena that are observed
in spinning buckets of sand.

Nomenclature
�Ax ,Ay ,Az� � components of acceleration of the glass ball in

its rigid body motion
a � acceleration vector
B � displacement matrix

CD � coefficient of drag
c � coefficient characterizing the viscoelastic be-

havior of the grains
�Dx ,Dy ,Dz� � components of drag force due to air

E � Young modulus
en � normal coefficient of restitution
eij � deviatoric part of strain tensor

�eij =�ij −1/3�kk�ij�
F � contact force

�Fx ,Fy ,Fz� � components of force acting on the glass ball
�rigid body motion�

G0 � instantaneous �glassy� shear modulus
G� � long time shear modulus

g � acceleration due to gravity
K � coefficient characterizing the inelastic behavior

of the grains
l � length of pendulum

m � mass of the glass ball �see Fig. 1�
N � number of nodal points defining the element

Rep � particle Reynolds number �Rep=	pV /� f�
�r ,
 ,�� � spherical coordinates system

S � the replacement gradient
Tp � tension of thread
T � traction loads vector

Tc � collision time
t � time

ui
p � nodal position of the pth node in the ith

direction.
V � particle velocity �rigid body motion� V= l�
̇2

+ �̇2 sin2 
�1/2

Vimp � impact velocity
Vimp

*
� dimensionless impact velocity �Vimp

* =Vimp/Vref�
Vref � reference velocity �Vref=1 m/s�.

�x ,y ,z� � Cartesian coordinates system

Greek
� � inclination angle �see Fig. 1�
� � inclination angle �see Fig. 1�
� � overlapping of a pair spherical particles with

diameter 	p at positions r1 and r2 ��=	p− �r1
−r2��

�ij � Kronecker delta
eij � deviatoric part of strain tensor defined as eij

=�ij −1/3�kk�ij
� � Lame coefficient ��=�E / �1+���1−2���

	p � particle diameter
	ij

�el�
� stress tensor in a rectangular coordinate

	 � stress vector whose transpose is given as 	t

= �	xx ,	yy ,	zz ,	xy ,	yz ,	zx�
	eff � von Mises stresses defined as 	xx

2 +	yy
2 +	zz

2

− �	xx	yy +	xx	zz+	yy	zz�+, 3��xy
2 +�xz

2 +�yz
2 �

� � exponent in the expression for contact force
� � coefficient of viscosity
� � density

� f � density of air
� � Poisson’s ratio

� f � air kinematic viscosity
� � interpolation matrix
� � exponent in the expression for contact force

�b1 � the boundary of spheres
p � interpolation functions of parametric coordi-

nates �� ,� ,��

0 ,�0 � initial displacements


eq ,�eq � equilibrium position
� � relaxation time

�� ,� ,�� � parametric coordinates

Superscript
dot � the derivative with respect to time
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Isotropic Clamped-Free Thin
Annular Circular Plate Subjected
to a Concentrated Load
The problem of an isotropic annular plate clamped along one edge and free at the other
and subjected to a concentrated load is solved by a series approximation. The continuity
conditions of deflection, slope, shear and radial moments at the radius of load applica-
tion are satisfied. Variations of deflection coefficient, radial moment coefficients and
shear coefficients with radius and angle are presented. �DOI: 10.1115/1.2165235�

1 Introduction
Annular plate problems occur in engineering application, for

example in the design of structures where a load is supported by a
circular overhang. Some of the early attempts to solve the annular
plate problems include the work of Conway �1� who considered
an annular plate with linearly varying thickness subjected to a
uniformly distributed load and a line load uniformly distributed
along the edge of the hole. The nature of the problem solved by
Conway �1� ensures that variations along the circumference var-
nish and that simplifies the governing equations greatly. Sher-
borne and Murthy �2� considered the elastic bending of an aniso-
tropic annular plate of variable thickness. But like the work of
Conway �1�, the solution is only valid for symmetrical loading.
Minguez and Vogwell �3� had solved the problem of an isotropic
clamped-free annular plate subjected to a uniform pressure. Lord
and Yousef �4� had attempted a similar problem by using numeri-
cal methods. Bird and Steele �5� presented an elegant treatment of
a circular plate with arbitrary number of circular holes subjected
to loading along boundaries.

Recently, Sharafutdinov �6� has considered the problem of an
annular plate subjected to concentrated load along its edges, using
the theory of functions of a complex variable. Sharafutdinov �6�
obtained stress distribution along the contour of the circular aper-
ture. Frequently, however, the applied load in neither uniform nor
symmetrical but concentrated. Furthermore, a more common
mode of concentrated load application is not along the edge of an
annular plate but normal to it. A common engineering design is an
annular plate loaded by a load-bearing member, transmitting a
concentrated load.

2 The Annular Plate Subjected to a Concentrated
Load

Consider an isotropic annular circular plate clamped at the
outer edge and free at the inner edge, such as shown in Fig. 1. The
plate is subjected to normal concentrated load, P applied at point
A at distance b from the center O of the plate. Timoshenko �7�
solved a similar problem for the circular plate clamped along its
edge. In this paper, an approximate solution is obtained for the
annular problem. The solutions are obtained by dividing the cir-
cular plate into the inner and outer parts. The separate solutions
are required to satisfy continuity relationship along the radius of

the load application. The radial moment, shear and deflections
variations with radius and angle are presented. This information
can be used in predicting the failure in this type of structure.

3 Governing Equations
The general theory of plate deformations is well documented

�7,8�. Consider an isotropic annular circular plate that is loaded at
point A at a distance b from the center of the plate �Fig. 1�. The
differential equation describing the deformation of the plate may
be written in polar coordinates as �8�

� �2

�r2 +
1

r

�

�r
+

1

r2

�2

��2�� �2w

�r2 +
1

r

�w

�r
+

1

r2

�2w

��2 � = P/Drr �1�

Following an approach used by Timoshenko �7�, we may divide
the plate into two parts by the cylindrical section of radius b as
shown in the figure by the dashed line. We then apply a series
solution of the form

w = �
m=0

�

Rm cos�m�� �2�

to the homogeneous equation each of the portions of the plate.
Once an equation for deflection is known, other structural quanti-
ties like shear and moment may be readily obtained for the de-
flection equation. This approach avoids the existence of degener-
ate solutions that may exist when different series representations
are introduced for the different structural quantities, as may be-
come necessary in employing a numerical method �9�. Chen, Wu,
Chen, and Lee �9� showed that by using different series represen-
tations for moment and shear forces, and by examining the result-
ing matrices, degenerate cases may result when the boundary in-
tegral equation and boundary element methods are employed.
Equation �2� is convergent provided that Rm is convergent. Sub-
stituting Eq. �2� into Eq. �1� gives

m2�m2 − 2�Rm�r� + rRm� �r� − r2Rm� �r�

− 2m2�Rm�r� − rRm� �r� + r2Rm� �r�	 + 2r3Rm��r� + r4Rm���r� = 0

�3�
Now substituting

Rm = rn �4�
into Eq. �3� gives

rn��− 2 + n��− 1 + n�2n − 2m2�− 1 + n�2 + �− 2m2 + m4 + 2n − n2�	

= 0 �5�

Solving Eq. �5� for n gives

�n	 = �m,m + 2,− m + 2,− m	 �6�
Hence, in general, the equation describing the inner plate is
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Rm = Amrm + Bmrm+2 + Cmr−m+2 + Dmr−m �7�
Similar expressions to those given in Eq. �6� may be written for
the functions R0�, R1�, and Rm� corresponding to the inner portion of
the plate. In the same sense, we employ the symbols Am� , Bm� and
so on in the place of Am, Bm , . . . for the constants of the outer part
of the plate.

Specifically, the equation describing the outer plate becomes

Rm� = Am� rm + Bm� rm+2 + Cm� r−m+2 + Dm� r−m �8�
In this way, the basis for the inner and outer sections emerges
naturally from the solution of the governing equations. This
method of arriving at the basis has numerously been applied by
Timoshenko �7�, Gupta �10�, and Carrier �11,12� in the solution of
this type of problems. Recently, Chen, Wu, and Lee �13� have
shown how different bases may be selected for the inner and outer
sections of the plate of a circular plate. Using different bases for
the inner and outer regions of a circular plate, as done for example
by Chen et al. �13�, averts the existence of singularity at the center
of the plate, as r tends to zero. Such a situation does not arise in
an annular plate.

4 Boundary Conditions
For each of the terms in Eqs. �7� and �8�, we have to determine

four constants for the outer portion of the plate and four for the
inner portion. Hence, a total of eight unknowns are involved in the
solution, requiring eight independent equations. Four of these
equations are obtained from the inner and outer boundary condi-
tions at the edges of the plate. Four additional equations are ob-
tained from the continuity conditions along the circle of radius b.
The applied concentrated load is readily expanded as Fourier
series,

P 
 P� 1

2
+ �

m=1

�
2 sin�m�/2�

m�
cos�m���, m = 1,3,5, . . . , 0 � �

� �/2. �9�
Thus, the boundary conditions involved are obtained as follows.
Since the plate is clamped at the outer radius r=a, deflection and
slope are zero on this boundary. Hence

Rm�r = a� = 0 �10�

�Rm

�r
�r = a� = 0 �11�

Since the inner boundary of the plate is free, the requirements that
the shear and moment be zero on this boundary lead, respectively,
to

� �3Rm

�r3 −
1

r2

�Rm

�r
+

1

r

�2Rm

�r2 −
m2

r2

�Rm

�r
�

r=c

= 0 �12�

� �2Rm

�r2 + ��1

r

�Rm

�r
−

m2

r2 Rm��
r=c

= 0 �13�

Along the circle r=b where the concentrated load is placed, the
following continuity equations are imposed �7�,

Rm�r = b� = Rm� �r = b� �14�

�Rm

�r
�r = b� =

�Rm�

�r
�r = b� �15�

�2Rm

�r2 �r = b� =
�2Rm�

�r2 �r = b� �16�

Nr�R0��r=b − Nr�R0���r=b =
P

4�b
�17�

Nr�Rm��r=b − Nr�Rm� ��r=b =
P sin�m�/2�

�2mb
m = 1,3,5. . . �18�

where

Nr�R� = − D� �3R

�r3 +
1

r

�2R

�r2 −
1

r2

�R

�r
−

m2

r2

�R

�r
� �19�

Also, from Eq. �9�,

Rm = 0,m = 2,4,8, . . . �20�

and Rm converges as the coefficients of the Fourier series �9�.

5 The Solution
Using the boundary conditions in the governing equations gives

the desired solutions. The solution of the eight simultaneous equa-
tions is both tedious and prone to algebraic errors. For simplicity,
the external radius of the annular circular plate is taken to be
unity, since this does not affect the generalization of the results.
Other dimensions are normalized with respect to the outer radius.
Furthermore, a symbolic tool, Mathematica �14�, has been used to
carry out the necessary algebraic simplifications. Depending on
the value of m, different solutions are obtained. For example, for
m=0, Eqs. �6� yield the solutions,

R0 = A0r2 + B0r2 ln r + C0 + D0 ln r �21�

R0� = A0�r
2 + B0�r

2 ln r + C0� + D0� ln r �22�

Similarly, for m=1, Eq. �6� yields the solutions

R1 = A1/r + B1r + C1r ln r + D1r3 �23�

R1� = A1�/r + B1�r + C1�r ln r + D1�r
3 �24�

For m�1, the solution are written consistently as

Rm = Amrm+2 + Bmr−m+2 + Cmr−m + Dmrm �25�

Rm� = Am� rm+2 + Bm� r−m+2 + Cm� r−m + Dm� rm �26�
Using the boundary conditions expressed in Eqs. �10�–�19�, the
constants An, Bn, Cn, Dn, An�, Bn�, Cn�, Dn�, for �n=0,1 ,m	 are
obtained. The expressions for the coefficients are given in the
Appendix . Using Mathematica, the coefficients for m=0 and m
=1 are found to reduce to the coefficients of the isotropic circular

Fig. 1 Annular circular plate subjected to a concentrated load
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plate in the limit as the inner radius becomes vanishingly small.

6 Results and Discussions
It is convenient to express the deflection, the radial moment,

and shear, respectively, as

w =
kwP

Drr
�27�

Mr =
kmrP

Drr
�28�

Ms =
ksP

Drr
�29�

Using a Poisson ratio of 0.3, the following results are obtained.
Figure 2 shows the variation of deflection coefficient with radius
for different annular radii, c, for a load placed at the center of the
plate. The smaller the inner radius is, the less the deflection for the
range of c, considered. Figure 3 shows the variation of radial
moment with radius. Between the inner radius and the point of
load application, moment is vanishingly small but increases sud-
denly from the point of load application to a maximum at the
clamped outer radius. Figure 4 shows the variation of shear with
radius. Shear is zero at the inner free boundary. From the point of
load application, shear is suddenly finite and decreases in magni-
tude towards the outer clamped end. Figure 5 shows the variation
of deflection with the circumferential angle. As expected, deflec-
tion is maximum along the meridian of load application and di-
minishes at the angle increases.

7 Conclusion
The problem of the point-loaded annular plate problem with

one edge clamped and the other free has been solved using a
series approximation. The approach had divided the plate into the
inner and outer regions, based on the radius at which the concen-
trated load is located. The continuity of deflection, slope, shear,
and radial moments at the radius of load application are satisfied.
Variations of deflection coefficient, radial moment coefficients,
and shear coefficients with radius and angle have been presented.

Nomenclature
a � outer radius of the annular plate
c � inner radius of the annular plate
b � distance of point load from the plate’s center

r ,� � Cartesian coordinates axes
w � deflection

Mr � moment radial component
Drr � uniform flexural rigidity of plate

� � Poisson’s ratio
P � concentrated load

Kw � deflection coefficient
Kmr � radial moment coefficient

Ks � shear coefficient
m � series index

Appendix

A0 = �1 + b2 − �1 + b2 − 2c2�v + 2c2�1 + v2 log b��/�0

B0 = 1/�8��0�

C0 = �v1 + b2v1 − 2c2v2�1 + log b��/�0

D0 = 2�b2v1 − c2v2 − 2c2v2 log b�/�0

A0� = �v1 − b2v1 + 2v1 log b�/�0

B0� = 0

C0� = ��b2 − 1��v1 − 2c2v2� + 2�− c2v2 + b2�v1 − c2v2��log b�/�0

D0� = 2c2v2�− 1 + b2 − 2 log b�/�0

A1 = �− b4�1 − 2v� − 3c4�2 + v� + b2c2�− b2�− 3 + v�

+ c2�9 + 5v� + v2� + 2b2c2�− c2�3 + v� + v2�log b − �− �− 1

+ 2b2�c4�3 + v� + b4v1�log c�/�1

Fig. 2 Variation of deflection coefficient versus r†�=0,b= „a+c… /2‡
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B1 = �− 2b2�− 1 + c2��c2�3 + v� − v1�log b

+ �− 1 + b2��− 9c4 − 5c4v + b2�− 1 + c2�− 3 + v� + 3v�

+ X5 − 2�c4�3 + v� − b2v1�log c�/�1

C1 = 2�− �b2 + 3c2��1 + b2 + �− 1 + 3b2�c2�

+ �1 + c2��b4 + c2 + b2�3 − 5c2��v + 2b2�− c4�3 + v�

+ v1�log�c/b��/�1

D1 = �b4v + c4�3 + 2v� + b2�1 − 3v + c2v2� − X5

+ 2b2�v1 − c2v2�log b + �c4�3 + v� + b2�− 2 + b2�v1�log�c��/�1

A1� = �c2�2b2�c2�3 + v� − v2�log b + �− 1 + b2��c2 + �− 3�2 + v�

+ b2�3 + 2v�� + b2v2 + �− 1 + b2�c2�3 + v�log c	��/�1

B1� = �− �2b2 log b�1 − 3v + c4�9 + 5v� − 2a2X5 + 2�c4�3 + v�

− v1�log c� + �− 1 + b2��− 9c4 − 5c4v + b2�− 1 + c2�− 3 + v�

+ 3v� + X5 − 2�c4�3 + v� − b2v1�log c���/�1

C1� = 2��− 1 + b2��− c4�3 + v� + b2�c2�− 3 + v� + v1� − X5�

+ 2b2�c4�3 + v� − v1�log b�/�1

Fig. 3 Variation of radial moment coefficient versus r†�=0,b= „a+c… /2‡

Fig. 4 Variation of shear moment coefficient versus r†�=0,b= „a+c… /2‡
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D1� = �2b2�v1 − c2v2�log b + �− 1 + b2��1 − 2v + b2v + c2�1 + v� + �

− 1 + b2�v1 log c��/�1

Am = �b−m�c2+4m�− mn2 + �− 2 + m2�v� − b2mc2�b2m − n1��− 2v

+ mX4� + c2m�− b2m�b2m − n1�v1 − c4�m2�1 + 3v� − 4v2�

+ c2n1�m1X3 + �b2m − b2m�X4����/�2

Bm = �b−m�c2+4m�b2m − m1��− mn2 + �− 2 + m2�v� − b2mc2�2v

− mX4� + c2m�b2mv1 + c2m1X3 + b2m�− c4�− 4�1 + v� + m2�1

+ 3v�� + b2mm1v1 + c2�b2m�2 − mn1 + �− 1 + m�mv�		��/�2

Cm = �b−m�c2+4mm�m − b2n1��− mn2 + �− 2 + m2�v� − c4+2m�− 1

+ b2mn1� + �− 4�1 + v� + m2�1 + 3v�� − b2+2mc2mm3v1

− b2+2mc2m�− 2v + mX4� + c2+2mmn1�− b2X4 + b2m�b2�− 2

+ m�n1 + v − mv�� + mX4����/�3

Dm = �b−m�− b2c2+4mm + �− mn2 + �− 2 + m2�v� − b2mc2m�m

− b2m1��− 2v + mX4� + c2m�− b2+2mc2m�2 + m2v − m�n1 + v��

+ c4m1�m2 + 3m2v − 4v2� + b2mc4�m2�1 + 3v� − 4v2�

− c2m2m1X3 + b2�− m3v1 + c2mm1n1�	��/�3

Am� = �b−m�− b2c2+4mm + �− mn2 + �− 2 + m2�v� − b2mc2m�m

− b2m1��− 2v + mX4� + c2m�− b2+2mc2m�2 + m2v − m�n1 + v��

+ c4m1�m2 + 3m2v − 4v2� + b2mc4�m2�1 + 3v� − 4v2�

− c2m2m1X3 + b2�− m3v1 + c2mm1n1�	��/�3

Bm� = �b−mc2m�− c2+2m�b2m − b2m + m1��− mn2 + �− 2 + m2�v�

+ m�b2 + b2m�− m + b2m1��v1 + c2�2 + m2v − m�n1 + v�

+ b2mm1�b2m − n1�X3���/�2

Cm� = �b−mc2+2m�c2mm�b2+2m + m − b2n1��− mn2 + �− 2 + m2�v�

+ c2�4�1 + v� − m2�1 + 3v� + b2m�n1�− 4 + m2 − 4v + 3m2v�

− b2�m3 + 3m3v − 4mv2�		 − m�b2 + b2m�− m + b2m1����/�3

Dm� = �b−mc2�b2m�c2+2m�− 4 + m2 − 4v + 3m2v� + m2�2v + m�m2

− mv��� + c2mm1�c2�− 4 + m2 − 4v + 3m2v� − m2X3�

+ b2+2mmm1�− 2v − c2mX3 + mX4� + b2m�− 2v + c2m�− c2�m2

+ 3m2v − 4v2� + m1n1X3� + mX4���/�3

�0 = 32��a2v1 − c2v2�Drr/P

�1 = 16b��1 + 4c2 − 2v + c4�3 + 2v� − �− c4�3 + v� + v1�ln c�Drr/P

�2 = 8m2�2m1�c2+4m�− mn2 + �− 2 + m2�v� + c2m�− 4c2�− 1 + m2�

+ m2v1 − c4�m2�1 + 3v� − 4v2�� + c2�− 2v + mX4��Drr/P

�3 = m�1n1/m1m1 = m − 1,m2 = m − 2,n1 = m + 1,n2 = m + 2,v1

= v − 1,v2 = v + 1,X1 = 2m − v − 1

X2 = 2m + v + 1,X3 = m�v − 1� − 2,X4 = 2 + m�v − 1�,X5 = c2�v

− 3�
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Post-buckling and Vibration of
Heavy Beam on Horizontal or
Inclined Rigid Foundation
A slender, straight beam resting on a flat, rigid foundation does not buckle when sub-
jected to a compressive load, since the load cannot overcome the effect of the beam’s
weight. However, it buckles if its ends are moved toward each other. Post-buckling of
such a beam is examined, both theoretically and experimentally, for horizontal and in-
clined foundations. The beam is modeled as an elastica, and equilibrium states with large
deflections are computed, including cases in which self-contact occurs. Frequencies and
mode shapes for small vibrations about equilibrium are also determined. Agreement
between the theoretical and experimental results is very good. �DOI: 10.1115/1.2165237�

1 Introduction
A beam is called “heavy” if its self-weight is included in the

analysis. Upheaval buckling of a heavy beam �actually a beam-
column� resting on a rigid horizontal foundation has been inves-
tigated for various situations. One involves pipelines, which may
be buried or rest on the seabed; then the weight of soil, water, or
other material is added to the self-weight. Another deals with the
handling of fabric, paper, or thin plastic or metal sheets. Other
applications involve railroad tracks, concrete roads and runways,
floating ice sheets, and rock strata. The compressive loads are
sometimes caused by thermal stresses. Papers on these problems
include �1–17� and earlier publications cited therein.

Most of these studies consider equilibrium configurations and
perform a linear analysis. Often end conditions are not involved,
and local buckling occurs in an internal segment of the beam. In
Plaut and Mróz �5,6�, large displacements were analyzed and the
beams were subjected to normal pressure. If the system is perfect
�horizontal foundation, straight beam, and concentric loading�,
buckling does not occur for a finite compressive load �i.e., there is
no bifurcation from the flat configuration�. Displacements may
occur due to imperfections, or to displacement control in which
the ends are pushed together.

An inclined foundation was considered by Bogy and Paslay
�18� in relation to buckling of a drill pipe in an inclined hole. The
bottom end of the heavy beam was simply supported, and the
beam was subjected to a compressive load. A linear analysis was
presented, and approximate equilibrium shapes were determined.
There was no finite buckling load. A similar configuration was
treated by Sampaio and Hundhausen �19�, except that the beam
was not supported by a foundation and it simply deflected down-
ward.

Here the heavy beam �called a strip� is treated as an inexten-
sible elastica. Its ends are fixed �no transverse displacement or
rotation�, and one end is pushed toward the other. A nonlinear
analysis is performed to compute equilibrium shapes. Both hori-
zontal and inclined �including vertical� foundations are consid-

ered. In addition to the static analysis, small vibrations about the
buckled equilibrium states are investigated �the references cited
above do not examine dynamic behavior�. A shooting method is
applied to solve the governing equations numerically. In addition,
experiments are carried out with polycarbonate strips. The corre-
lations between the experimental and analytical equilibrium
shapes, vibration modes, and vibration frequencies are very good.

The analytical formulation is presented in Sec. 2. In Sec. 3, the
experiments are described. Analytical and experimental results are
presented in Sec. 4 for a horizontal foundation, and in Sec. 5 for
inclined foundations. Finally, concluding remarks are given in
Sec. 6.

2 Analytical Formulation
The thin, uniform strip is depicted in Fig. 1�a� in an inclined

configuration. It has length L, constant bending stiffness EI, and
constant weight W per unit length. Points on the strip have coor-
dinates X�S ,T� and Y�S ,T�, and rotation ��S ,T� with respect to
the X axis, where S is the arc length and T is time. The inclination
angle of the foundation with respect to the horizontal is �, and the
axial end-shortening of the strip is �.

The internal forces in the strip are denoted P�S ,T� and Q�S ,T�
parallel to the X and Y axes, respectively, and the bending moment
is M�S ,T�. The governing equations, based on geometry, moment-
curvature relation, and dynamic equilibrium, are �20�

�X/�S = cos �, �Y/�S = sin � ,

��/�S = M/EI, �M/�S = Q cos � − P sin � ,

�P/�S = − W sin � − �W/g��2X/�T2,

�Q/�S = − W cos � − �W/g��2Y/�T2. �1�
Damping is neglected.

The following nondimensional quantities are defined:

w = WL3/EI, x = X/L, y = Y/L, s = S/L, � = �/L ,

p = PL2/EI, q = QL2/EI, m = ML/EI ,

t = �T/L2��EIg/W, � = �L2�W/EIg �2�

where � is a dimensional vibration frequency. In nondimensional
terms, Eqs. �1� become
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�x/�s = cos �, �y/�s = sin � ,

��/�s = m, �m/�s = q cos � − p sin � ,

�p/�s = − w sin � − �2x/�t2, �q/�s = − w cos � − �2y/�t2. �3�
The variables are written in the form

x�s,t� = xe�s� + xd�s�sin �t, y�s,t� = ye�s� + yd�s�sin �t ,

��s,t� = �e�s� + �d�s�sin �t, m�s,t� = me�s� + md�s�sin �t ,

p�s,t� = pe�s� + pd�s�sin �t, q�s,t� = qe�s� + qd�s�sin �t �4�

where subscripts e and d denote equilibrium and dynamic quanti-
ties, respectively. At equilibrium, the equations are given by

xe� = cos �e, ye� = sin �e,

�e� = me, me� = qe cos �e − pe sin �e, �5�
where the internal forces can be written as

pe�s� = po − sw sin �, qe�s� = qo − sw cos � �6�

with p0 and q0 representing values at s=0.
After determining the equilibrium shape with the use of Eqs.

�5�, small vibrations about equilibrium are considered. Equations
�4� are substituted into Eqs. �3�, and Eqs. �5� are utilized. The
resulting linear equations in the dynamic variables are

xd� = − �d sin �e, yd� = �d cos �e,

�d� = md, md� = �qd − pe�d�cos �e − �pd + qe�d�sin �e,

pd� = �2xd, qd� = �2yd. �7�
The strip is called “short” if it does not touch the foundation

between its ends. If there is a flat section resting on the foundation
at both ends, the strip is called “long” �20�. For inclined founda-
tions, the strip may have a flat section at its upper end but not at
its lower end, and then it will be called “short-long.” For suffi-
ciently high values of end-shortening, self-contact may occur, in
which two points on the strip contact each other and the segment
between has a teardrop shape �21,22�.

3 Experiments
Thin polycarbonate strips were used for the experiments. The

specific weight was 11.2 kN/m3 and Young’s modulus was
2.4 GPa. The strips were 76.2 mm wide. Two thicknesses �0.508

and 1.016 mm� and two lengths �0.532 and 0.832 m� were used in
combinations to yield three different values for the nondimen-
sional weight w.

Each end of the strip was clamped under an aluminum bar, and
these bars were attached to a long plate, allowing one bar to move
toward the other in 6.35-mm increments to create the end-
shortening �see Fig. 1�b��. The strip was deflected beyond the
transition from long to short or short-long equilibrium before tak-
ing any measurements for both the static and dynamic
experiments.

For equilibrium measurements, the vertical deflection of the
strip’s midpoint was recorded for varying end-shortening values.
Deflection measurements were continued for a few end-shortening
values larger than that for which self-contact occurred.

A point-to-point laser vibrometer �Ometron VH300�� was used
to measure the velocity at certain points along the strip during the
small-vibration experiments. For � values ranging from 0.021 to
0.917, the first four frequencies were obtained by exciting the strip
manually in varying directions and at different locations along the
strip. Frequency measurements also were acquired by measuring
the beam response to forced excitation. The long plate supporting
the strip was attached to a shaker �MB Dynamics PM50A Vibra-
tion Exciter� that moved horizontally. The shaker frequency was
configured for a swept sine wave with frequencies from
0.008 to 50 Hz.

For the modal analysis, the strip was excited with a modal
impact hammer �Endevco 2302-50�. This forcing and the beam
response data acquired by the vibrometer were analyzed using
ME’scope VES �Vibrant Technology, Inc.� to generate a frequency
response function for each measurement point. The hammer was
utilized to excite the strip at the same location and in the same
direction for every measurement at a given end-shortening, and
the vibrometer was adjusted to measure the response at 30 differ-
ent points, in a specified direction, along the strip. Vibration
modes associated with the first three frequencies were
constructed.

4 Horizontal Strip

4.1 Equilibrium. For a horizontal foundation ��=0� and a
long strip, extensive equilibrium results have been computed by
Domokos et al. �15�. The weight of the strip was incorporated into
the nondimensionalization, so that the case of negligible weight
was not included. Dimensional lengths were divided by the “bend-
ing length” b= �EI /W�1/3, so that, in the present analysis, w
= �L /b�3. Naturally the boundary conditions at the ends of the strip
are irrelevant for long strips. At the lift-off �separation� points

Fig. 1 „a… Schematic of heavy inclined strip „b… Photo of experimental system
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from the foundation, the deflection, rotation, and bending moment
are zero. The authors showed that the primary stable equilibrium
state is symmetric until shortly before self-contact would occur,
and with further end-shortening the central part of the uplifted
segment tilts to one side and then self-contact occurs later. The
location of the self-contact point changes as the ends of the strip
are pushed together more, and finally the central portion drops
low enough to touch the foundation. In the present work, both
long and short strips will be studied.

To obtain numerical results for the equilibrium shapes of strips
on a horizontal foundation ��=0 in Fig. 1�a��, a shooting method
is used, utilizing some of the advanced capabilities of Matlab and
Mathematica. For equilibrium shapes of short strips with no self-
contact, the known conditions at s=0 are xe=ye=�e=0. The
weight w and end-shortening � are specified, the quantities me�0�,
po, and qo are guessed, Eqs. �5� are integrated numerically, and the
three quantities are varied until the conditions xe=1−� and ye
=�e=0 are satisfied at s=1 with sufficient accuracy. Alternatively,
for symmetric shapes, one can set qo=w /2 and vary me�0� and po
until two of the three end conditions are satisfied, or combine the
three conditions into two �e.g., xe=1−� and ye

2+�e
2=0�.

To compute symmetric shapes of short strips with self-contact,
the origin is moved to the contact point and half the strip is con-
sidered, as shown in Fig. 2 in nondimensional terms. The arc
length of the lower segment is denoted d. Equations �4� and �5�
are valid in each segment for the appropriate variables. The
weight w and length d are specified. The value of qo is �0.5
−d�w for each segment, and the bending moments are equal at the
contact point. The three variables are po for each segment and
m1�0�, where a subscript 1 or 2 indicates the segment. The vari-
ables are changed until �1�d�=� /2, �2�0.5−d�=−� /2, and
y2�0.5−d�=0. In the numerical procedure, the arc lengths are
scaled, with s1 divided by d and s2 by 0.5−d, so that all end
conditions occur at the scaled arc length of unity. The end-
shortening is given by �=1−2y1�d�.

To determine equilibrium shapes of long strips, the origin of the
coordinate system is moved to the left lift-off point �i.e., the end
of the flat portion on the left side�. The unknown length of the
central uplifted portion is denoted c. The weight w is specified. At
s=0, the known conditions are xe=ye=�e=me=0, and c, p0, and
q0 are varied until the conditions ye=�e=me=0 are satisfied at s
=c. For symmetric equilibrium configurations, qo=wc /2 and there

are only two variables. The end-shortening is given by �=c
−xe�c�. �In �20�, for symmetric shapes, the origin is placed on the
strip at the midpoint rather than at a lift-off point.�

Equilibrium paths for the horizontal foundation ��=0� are de-
picted in Fig. 3 in the plane of end-shortening � versus axial load
po, along with some corresponding equilibrium shapes, for
weights w=0, 25, 125, 250, and 343. �In �20�, curves of b
=2ye�0.5� and 2� are plotted versus F= po /4 for B=w /8=0, 0.5,
1, 2, and 5.� For w=0 �no weight�, the fixed-fixed strip buckles at
po=4�2, and shapes at points A, B, and C along the post-buckling
path are shown. Self-contact occurs at C, when �=0.849 and po
=72.18 �21�, with midpoint deflection y�0.5�=0.403. Upon further
increase of �, the path to the right of C is followed, with large
increases in p0 associated with small increases in �. �Analysis of a
pinched loop similar to the central portion of the shape at C is
presented in �22�.�

For heavy strips �w	0�, as � is increased from zero, the strip is
initially long. For weights w=25, 125, and 250, respectively, the
strip becomes short when �=0.010,0.209 �point D�, and 0.577
�point F�, with corresponding axial load values po=80.60, 81.79,
and 81.36, and midpoint deflections ye�0.5�=0.060, 0.255, and
0.354. For w=25, symmetric self-contact occurs when �=0.845,
po=71.65, and ye�0.5�=0.401. For w=125, the symmetric shape
becomes unstable when �=0.820 and po=69.74, and the stable
equilibrium associated with tilted �asymmetric� shapes bifurcates
leftward in Fig. 3 toward point E, where self-contact occurs with
�=0.820 and po=60.33. For w=250, the symmetric shape be-
comes unstable when �=0.673 and po=75.46, the path bifurcates
from the solid curve to the leftward dashed curve, and self-contact
occurs in the asymmetric shape at point G where �=0.690 and
po=−23.58 �a tensile force at s=0�. For w=343, the strip remains
long until the symmetric shape becomes unstable and then the
asymmetric shape exhibits self-contact when �=0.73 and po

Fig. 2 Coordinate systems for symmetric equilibrium with
self-contact

Fig. 3 Equilibrium shapes and end-shortening as a function of
axial load for horizontal strip with weights „from left to right…
w=0, 25, 125, 250, and 343
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=83.0. Long equilibrium shapes are sketched for points H and I
on the path, in which the open circles indicate the locations at
which lift-off occurs.

The relationship of the vertical midpoint deflection ye�0.5� to
the end-shortening � is shown in Fig. 4. The curve presents nu-
merical results for the case w=32.56, and the open circles repre-
sent experimental data for a strip having length 0.532 m and
thickness 0.508 mm �and also w=32.56�. There is excellent agree-
ment between the theoretical and experimental results. The tran-
sition from a long to short strip occurs at �=0.017 according to
the analysis. Self-contact occurs theoretically at �=0.844 and ex-
perimentally at �=0.86. The closed circles correspond to test re-
sults for a shorter strip, with length 0.356 m �w=9.74�. For the
two lengths considered, the nondimensional midpoint deflection
ye�0.5� �i.e., ratio of dimensional vertical midpoint deflection to
length of the strip� is very similar for the same nondimensional
end-shortening �i.e., ratio of dimensional end-shortening to strip
length�.

4.2 Vibration. Small vibrations about equilibrium are consid-
ered. For long strips, the fundamental �i.e., lowest� frequency is
zero, since the equilibrium shape can be moved to the side �i.e.,
there is an adjacent equilibrium state�. Long equilibrium shapes
are unstable to asymmetric perturbations. Only vibrations of short
strips are examined in this study.

A similar shooting method is applied to obtain numerical solu-
tions to Eqs. �7�, making use of the equilibrium values. The initial
conditions at s=0 are xd=yd=�d=0. The quantities md�0�, pd�0�,
and qd�0� are varied until xd=yd=�d=0 at s=1.

Figure 5 shows the fundamental frequency for w=0, 25, 125,
and 250, along with the mode shapes for four cases. For symmet-
ric equilibrium shapes, the corresponding mode is antisymmetric
with just a node at the midpoint, so the central portion of the strip
sways �rocks� from side to side during the motion. As the end-
shortening � is increased, the fundamental frequency is zero at the
transition from long to short equilibrium shape, and then is zero
again when the symmetric shape becomes unstable �as seen for
weights w of 125 and 250�.

For w=0, the frequency at �=0 is �=44.36, corresponding to
the second frequency of a fixed-fixed column subjected to an axial
load po=4�2. When �=19.81 for w=0, and also when �=5.35
for w=25, symmetric self-contact occurs, and these two curves in
Fig. 5 are ended. For w=125, as � is increased beyond the value
0.820 where the symmetric shape becomes unstable, the strip tilts
and the frequency increases until self-contact occurs when �
=0.155 �and �=0.820 still�. For w=250, as � is increased beyond
0.673 and the strip tilts, the frequency increases to �=0.501 �with

�=0.685�, and then decreases to �=0.343 where asymmetric self-
contact occurs �with �=0.690�. An asymmetric mode along this
path is depicted in Fig. 5.

In Fig. 6, similar curves are plotted to compare experimental
and analytical results, with frequencies in Hz. The open circles are
associated with tests on a strip of length 0.532 m and thickness
1.016 mm, giving w=8.145. For the data point with the largest
end-shortening, the strip exhibits self-contact. The dark curve with
slightly smaller frequencies is from the analysis with this weight.
Since the ratio of the strip’s width to its thickness is 7.5 for this
case �and 15 for the other two cases in this figure�, platelike ef-
fects might be significant. Therefore, the light curves are also
plotted, in which the beam bending stiffness is divided by 1−
2,
where Poisson’s ratio, 
, is taken to be 0.37 �e.g., w=7.030 for
this case�. The experimental frequencies tend to lie between the
curves for the beam and plate analyses.

The solid circles in Fig. 6 correspond to tests on a strip of
length 0.532 m again, but a thickness of 0.508 mm, so that w
=32.56 for the beam model and 28.10 for the plate model. Several
data points at high values of end-shortening are associated with

Fig. 4 Midpoint deflection as a function of end-shortening for
horizontal strip. Continuous line and �, w=32.56; �, w=9.74. Fig. 5 End-shortening as a function of fundamental frequency

for short horizontal strips with w=0, 25, 125, and 250, and
mode shapes; equilibrium shapes are shown in gray

Fig. 6 End-shortening as a function of fundamental frequency
for horizontal strips. Dark curves are „from right to left… for w
=8.145, 32.56, and 124.7; light curves are for w=7.030, 28.12,
and 107.6. �, �, and �, experiment.
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strips having self-contact. For the leftmost results, the open tri-
angles were obtained experimentally for a longer strip, with length
0.832 m and thickness 0.508 mm. In this case, w=124.7 for the
dark curve �beam� and 107.6 for the light curve �plate�.

For �=0 and w=32.56, the first four frequencies �in Hz� are
plotted in Fig. 7. �Results for the fundamental frequency are also
contained in Fig. 6.� The experimental data points were obtained
for a strip of length 0.532 m and thickness 0.508 mm. Open
circles denote results obtained by forced vibration. The agreement
is excellent for the first two frequencies, and very good for the
third and fourth.

The fundamental frequency is zero when the strip becomes
short at �=0.017 �with po=80.86�. As the end-shortening is in-
creased, the fundamental frequency increases and then decreases.
Self-contact occurs when �=0.844 and po=71.47. As mentioned
before, the first mode shape is antisymmetric with one central
node. Vibration in this mode is shown at the top of Fig. 8 for �
=0.117 and at the top of Fig. 9 for �=0.821, with the analytical
shape on the left and the experimental shape on the right.

The second computed frequency at �=0.017 is 5.14 Hz ��
=42.92�, corresponding to a symmetric mode with no nodes. This
is possible even though the strip is inextensible, since the equilib-
rium shape has some inflection points �23�. If plotted with upward
vertical displacement, the mode shape has a local minimum at the
midpoint and a local maximum on each side. The central parts of
Figs. 8 and 9 show vibration in this mode, with the vibrating strip
above the equilibrium shape �i.e., the mode shape is added to the

equilibrium configuration�. The frequency for this mode increases
as � increases, and �according to the analysis� is equal to 10.70 Hz
��=89.35� when self-contact occurs.

The third computed frequency at �=0.017 is 18.27 Hz ��
=152.5�, and the mode is antisymmetric with three nodes. Vibra-
tion in this mode is shown at the bottom of Figs. 8 and 9. In this
case, the frequency decreases as � increases, becomes lower than
that for the no-node symmetric mode, and is equal to 9.71 Hz
��=81.09� when self-contact occurs. �The shapes in Fig. 9 are
labeled according to their mode number in Fig. 8, and not in the
order of the frequencies.� The fourth frequency also decreases as �
increases, reaching 16.55 Hz ��=138.2� at self-contact, and the
mode is symmetric with four nodes.

5 Inclined Strip
Inclined strips with 0���� /2 �Fig. 1� are considered first.

There are no symmetric equilibrium shapes. For small end-
shortening, the strip is short-long: it has a flat section resting on
the foundation at the higher end, but not at the lower end. For
short inclined strips, the numerical solution technique is similar to
that for short horizontal strips. To compute short-long equilibrium
shapes, the unknown length of the uplifted portion is again de-
noted c, and the origin is at the lower end of the strip. At s=0, the

Fig. 7 End-shortening as a function of lowest four frequencies
for horizontal strip with w=32.56. Experiment: � „forced… and �
„free…; various lines, theory. Self-contact is indicated by the
gray lines: Continuous, theory; dashed, experiment.

Fig. 8 First three vibration modes from analysis and experi-
ment for horizontal strip with w=32.56 and �=0.117; equilib-
rium shape is dashed

Fig. 9 First three vibration modes from analysis and experi-
ment for horizontal strip with w=32.56 and �=0.821; equilib-
rium shape is dashed
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known conditions are xe=ye=�e=0. For given w, �, and c�1, the
values of me�0�, po, and qo are varied until the conditions ye=�e

=me=0 are satisfied at s=c. The remaining length, 1−c, lies flat
against the base, and the end-shortening is given by �=c−xe�c�.
For inclination angle �=0.627 �35.9°�, computed equilibrium
shapes for c=0.7 and c=0.8 are depicted in Fig. 10, along with
two short shapes �c=1�. The open circles indicate the lift-off
points.

Figure 11 depicts end-shortening versus fundamental frequency
�in Hz� for w=32.56 and four values of �. The leftmost curve and
solid circles are for the horizontal strip ��=0� and are the same as
the dark curve and solid circles in the middle of Fig. 6. The next
curve �dot-dashed� and open circles correspond to �=0.627
�35.9°�. For this inclination, the transition from short-long to short
equilibrium occurs when �=0.000862, and self-contact occurs
when �=0.844, at a fundamental frequency of 2.14 Hz ��
=17.82�. To the right of those results in Fig. 11, the dashed curve
and open diamonds are for the case �=0.944 �54.1°�. The strip

becomes short when �=0.00444, and self-contact occurs again at
�=0.844, with a higher fundamental frequency of 2.24 Hz ��
=18.72�.

On the right of Fig. 11 �dotted line and open triangles� are the
results for �=� /2. This vertical case corresponds to a heavy col-
umn with fixed ends, and only has short post-buckled shapes. In
fact, the foundation is irrelevant. Under the assumption of an in-
extensible elastica, the end-deflection � for the vertical strip re-
mains zero until the column buckles when the axial force po at the
base reaches 55.4, and the initial fundamental frequency on the
post-buckling path is 5.29 Hz ��=44.20�. Self-contact occurs
when �=0.847, with a fundamental frequency of 2.45 Hz ��
=20.42�. For a given end-shortening �, as the inclination angle �
increases from 0 to � /2, it is seen in Fig. 11 that the fundamental
frequency increases.

Equilibrium shapes and modes are shown in Fig. 12 for the
vertical strip ��=� /2� with w=32.56 and �=0.630. The equilib-
rium shape is shown as a dashed curve, and the vibration shapes
for the first three modes are depicted as solid curves, with analyti-
cal results on the left and experimental shapes on the right. Again
the first mode has one node, the second mode has no nodes, and
the third mode has three nodes.

6 Concluding Remarks
If a slender elastic beam, unstrained when straight, rests on a

flat, rigid foundation that is horizontal or inclined �but not verti-
cal�, the weight of the beam will prevent it from buckling under
any finite, concentric, compressive end load. However, the beam

Fig. 10 Equilibrium shapes for the inclined strip with �
=0.627. The strip is short-long in „a… and „b…, and short in „c…
and „d….

Fig. 11 End-shortening as a function of fundamental fre-
quency for inclined strips with w=32.56. Solid curve and �, �
=0; dot-dashed curve and �, �=0.627; dashed line and �, �
=0.944; dotted line and �, �=� /2.

Fig. 12 First three vibration modes from analysis and experi-
ment for vertical strip with w=32.56 and �=0.630, along with
equilibrium shape „dashed curve…
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will buckle if the ends are moved toward each other �i.e., displace-
ment control, with applied end-shortening�. Applications occur in
the handling of fabrics and other materials, upheaval buckling of
pipelines and roads, and drilling.

This problem was analyzed under the assumption that the strip
is an inextensible elastica of finite length with fixed ends. Equi-
librium shapes with large deformations were determined numeri-
cally. Small vibrations about the equilibrium shapes were investi-
gated, and frequencies and modes were obtained. Experiments
with polycarbonate strips also were carried out, and the test data
correlated very well with the theoretical results. Most of the cases
examined were associated with a horizontal foundation. The in-
clined cases involved two inclination angles as well as a vertical
strip.

For the case of a horizontal foundation, as the ends of the strip
are moved together, an internal segment buckles into a symmetric
equilibrium shape and the strip is called �long.� This shape is
unstable to asymmetric perturbations. If the weight of the strip is
sufficiently large, the buckled segment tilts at a certain value of
end-shortening, then two sides of the segment contact each other
at a point �self-contact�, and then the segment continues tilting
until it hits the foundation �15�.

If the weight is not too large, the length of the internal buckled
segment increases as the end-shortening increases, until the whole
strip is buckled, and the strip is then called “short.” The first mode
of the buckled short strip is antisymmetric with one node, the
second mode is symmetric with no nodes, the third mode is anti-
symmetric with three nodes, and the fourth mode is symmetric
with four nodes. For small weights, self-contact occurs with a
symmetric shape, but for intermediate weights it occurs after the
equilibrium shape of the short strip has tilted to one side.

For strips with inclination angles between 0 and � /2, as the
higher end is initially moved downward toward the lower end, a
flat segment exists adjacent to the higher end but not the lower
end, and the strip is called “short-long.” If the weight is not too
large, the buckled length expands until the whole strip is raised
from the foundation, i.e., the strip becomes short. After this, the
fundamental frequency increases and then decreases. For suffi-
ciently large end-shortening, self-contact occurs.

If the foundation is horizontal ��=0� and the beam is buckled
upward by moving the ends together, and then the foundation is
removed and the ends are pulled apart, how does the beam be-
have? Equilibrium states have been computed for the case w
=125 with the use of Eqs. �5� and no restriction that ye�s� be

positive or symmetric. The resulting midpoint deflection ye�0.5� is
plotted as a function of the end-shortening � in Fig. 13.

Here solid curves correspond to stable equilibrium states, and
dashed curves to unstable states. As the ends of the upward-
buckled beam are pulled apart, the upper solid curve is followed
from right to left. At �=0.209, there is a bifurcation point with an
asymmetric equilibrium path. With further pulling of the ends, the
beam snaps downward and �if damping is present� settles into a
downward symmetric shape on the lower solid curve, and then
follows that curve to the left, approaching the origin where the
beam is straight.

On the unstable branch passing downward to the left from the
bifurcation point, the configurations are symmetric and the beam
hangs below the x axis near its ends. The limit point occurs at �
=0.112, and continuing on that branch, self-contact occurs at �
=0.774. On the unstable branch of asymmetric shapes, self-
contact occurs at �=0.720. The shapes depicted on that branch
show the upper part of the beam bending to the left, and there are
also mirror-image equilibrium configurations with the upper part
bending to the right.

The lower solid curve is associated with hanging equilibrium
states, as considered previously in �19� for an inclined elastica. If
the ends are pushed together, self-contact occurs at �=0.863. On
the upper solid curve, results for high end-shortening were dis-
cussed previously, and the tilted self-contacting shape at point E
of Fig. 3 is reached when �=0.820, where the curve ends. The
dotted curve from the bifurcation point to the origin in Fig. 3
corresponds to the long beam with a rigid foundation preventing it
from snapping downward �as considered previously in this paper�.
Similar results for w=32.56 and 9.74 were plotted in Fig. 4.

The equilibrium equations for the horizontal beam possess
many solutions that have multiple upward humps �i.e., at least two
local maxima�. Some of these states exist above a rigid founda-
tion, as was demonstrated in �13� for long beams, including the
case of two humps with a local minimum at the midpoint. Most
are associated with high axial loads, and all the cases for short
beams that were computed during the present study, with and
without a foundation, are unstable and are not plotted in any of the
figures.
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The Arithmetic Mean Theorem of
Eshelby Tensor for Exterior Points
Outside the Rotational
Symmetrical Inclusion
In 1957, Eshelby proved that the strain field within a homogeneous ellipsoidal inclusion
embedded in an infinite isotropic media is uniform, when the eigenstrain prescribed in the
inclusion is uniform. This property is usually referred to as the Eshelby property. Al-
though the Eshelby property does not hold for the non-ellipsoidal inclusions, in recent
studies we have successfully proved that the arithmetic mean of Eshelby tensors at N
rotational symmetrical points inside an N-fold rotational symmetrical inclusion is con-
stant and equals the Eshelby tensor for a circular inclusion, when N�3 and N�4. The
property is named the quasi-Eshelby property or the arithmetic mean theorem of Eshelby
tensors for interior points. In this paper, we investigate the elastic field outside the
inclusion. By the Green formula and the knowledge of complex variable functions, we
prove that the arithmetic mean of Eshelby tensors at N rotational symmetrical points
outside an N-fold rotational symmetrical inclusion is equal to zero, when N�3 and N
�4. The property is referred to as the arithmetic mean theorem of Eshelby tensors for
exterior points. Due to the quality of the Green function for plane strain problems, the
fourfold rotational symmetrical inclusions are excluded from possessing the arithmetic
mean theorem. At the same time, by the method proposed in this paper, we verify the
quasi-Eshelby property which has been obtained in our previous work. As corollaries,
two more special properties of Eshelby tensor for N-fold rotational symmetrical inclu-
sions are presented which may be beneficial to the evaluation of effective material prop-
erties of composites. Finally, the circular inclusion is used to test the validity of the
arithmetic mean theorem for exterior points by using the known solutions.
�DOI: 10.1115/1.2165238�

1 Introduction
Eshelby �1� proved that the strain field within a homogeneous

ellipsoidal inclusion embedded in an infinite isotropic media is
uniform, when the eigenstrain prescribed in the inclusion is uni-
form. This property is usually referred to as the Eshelby property.
Since then, the inclusion problem with an inclusion in an infinitely
extended media has been widely investigated by many authors
�1–5�. These works are fundamental in the study of material sci-
ence. However, due to the absence of the Eshelby property, the
study of non-ellipsoidal inclusions remains a challenging problem
�6–9�. Efforts once were made to find the uniform elastic fields for
other shapes of inclusions for prescribed uniform eigenstrains
�10�, but later �11� it was proved that the non-ellipsoidal inclusion
cannot have a uniform field.

In spite of this, the non-ellipsoidal inclusion problem has be-
come increasingly important since more and more non-ellipsoidal
reinforcements are used in composite materials. Furthermore, in
recent years the Eshelby problems with arbitrarily shaped inclu-
sions have been successfully introduced to analyze the strained
semiconductor quantum devices �12–16�, where the strain-
induced quantum wire and quantum dot growth is critical to the
semiconductor nanostructure design. Among the non-ellipsoidal

inclusions are the common rotational symmetrical inclusions. As
we know, the cross section of most reinforcements in composites
and most quantum wires in strained semiconductor devices has a
boundary composed of uniform curves with specified rotational
symmetry, e.g., the carbon nanotubes which display hexagonal
symmetry �17�, a special kind of rotational symmetry. Hence, ro-
tational symmetrical inclusion problems are gaining interest from
more and more researchers. For instance, the authors in Ref. �18�
considered a two-dimensional isotropic oscillator model of a
single cylindrical quantum dot with rotational symmetry.

Although the Eshelby property does not hold for non-ellipsoidal
inclusions, special properties have been found for the rotational
symmetrical inclusions in recent studies. In 1997, when investi-
gating the elastic field in an arbitrary convex polygonal inclusion
within an infinite matrix, Nozaki and Taya �19� obtained numeri-
cally that for any regular polygonal inclusion, except for a square,
both the Eshelby tensor at the center and the average Eshelby
tensor over the inclusion domain are equal to the Eshelby tensor
for a circular inclusion and independent of the orientation of the
inclusion. In 2001, Kawashita and Nozaki �20� verified math-
ematically these remarkable results. Then, in the previous works
�21�, we initiated the topic on the Eshelby problem with the com-
mon two-dimensional rotational symmetrical inclusion and dis-
covered the quasi-Eshelby property, also called the arithmetic
mean theorem of Eshelby tensors for interior points. Namely, for
an N-fold rotational symmetrical inclusion, when N�3 and N
�4, the arithmetic mean of the Eshelby tensors at N rotational
symmetrical points in the inclusion is the same as the Eshelby
tensor for a circular inclusion and independent of the orientation
of the inclusion. Meanwhile, as a corollary of the quasi-Eshelby
property, we presented that the average Eshelby tensor over the
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N-fold rotational symmetrical inclusion domain was a constant
and equal to the Eshelby tensor for a circular inclusion. These
results can be used in micromechanics and composite mechanics
based on the concept of equivalent eigenstrains, like the renowned
Eshelby property.

In this paper, we still discuss the Eshelby problem with a two-
dimensional rotational symmetrical inclusion of uniform eigen-
strains. However, our purpose is to find special properties of Es-
helby tensors for the points outside the rotational symmetrical
inclusion, which is also an important topic in the study of rota-
tional symmetrical inclusions. Most of the formal works �20–23�
on the special properties of Eshelby tensors are focused on the
points inside the inclusion. It can be expected that the Eshelby
tensors at the exterior points also possess some similar special
properties since the exterior field shares the same Green function
with the interior field.

By making use of the Green formula and introducing the com-
plex plane, we prove successfully that the arithmetic mean of
Eshelby tensors at N rotational symmetrical points outside the
N-fold rotational symmetrical inclusion is equal to zero, when N
�3 and N�4. This property is referred to as the arithmetic mean
theorem of Eshelby tensors for exterior points. As a by-product,
this paper also proposes an alternative method to prove the quasi-
Eshelby property obtained in Ref. �21�. Furthermore, two corol-
laries are presented to show more special properties of the Es-
helby tensors for the rotational symmetrical inclusion. The first
corollary shows that the line integral average of Eshelby tensors
along a concentric circle �c�r ,o�, which is located outside the
inclusion, equals zero. The second corollary indicates that the area
average of Eshelby tensors over the domain bounded by the circle
�c�r ,o� is in direct proportion to the area of the inclusion and in
inverse proportion to the area of the circle. Hopefully, these prop-
erties may be used in the evaluation of effective material proper-
ties of composites. It should be noticed that due to the quality of
the Green function for plane strain problems, the fourfold rota-
tional symmetrical inclusions are deprived of the arithmetic mean
theorem.

In order to validate the arithmetic mean theorem for exterior
points, the Eshelby problem with a circular inclusion is considered
by using the solution of the elastic field for exterior points in Ref.
�2�. Since a circle can be treated as an arbitrary fold rotational
symmetrical figure, the arithmetic mean theorem implies that the
arithmetic mean of Eshelby tensors at any N rotational symmetri-
cal points outside the circular inclusion should be equal to zero, as
long as N�3 and N�4. Taking advantage of the elastic solution
of the exterior field for the Eshelby problem with an ellipsoidal
inclusion by Ferrers �24� and Dyson �25�, we obtained the explicit
solution for the circular inclusion problem. Then, by the explicit
solution, we check the arithmetic mean of Eshelby tensors at any
N rotational symmetrical points, and it turns out that the specified
arithmetic means are all equal to zero, under the condition of N
�3 and N�4. These results totally conform to the arithmetic
mean theorem of Eshelby tensors for exterior points.

The paper is organized as follows: By the Green formula we
first express the Eshelby tensors for any-shaped inclusions by two
kinds of line integrals along the boundary of the inclusion in Sec.
2. Then in Sec. 3, by introducing the complex plane, we transform
the two contour integrals into the complex integral representation
and obtain some universal relations. In Sec. 4, on the basis of the
complex integral representation, we discuss the rotational sym-
metrical inclusion and prove the arithmetic mean theorems for
both exterior points and interior points. Two corollaries are also
provided in this section. In Sec. 5, we test the arithmetic mean
theorem for exterior points by considering a circular inclusion and
using the available solutions. Finally, a brief summary and some
remarks are given in Sec. 6.

2 Basic Equations
Consider an infinite, homogeneous, and isotropic matrix con-

sisting of a homogeneous inclusion �+ with the boundary �. The
domain outside the inclusion is denoted as �−. It is assumed that
the inclusion shares the same elastic moduli with the matrix and is
prescribed a uniform eigenstrain �ij

* . The Cartesian coordinate sys-
tem �x1 ,x2 ,x3� is adopted and the plane strain condition for x1
−x2 is assumed in this paper. Consequently, all subscripts in the
following equations i , j ,k , l ,m ,n range from 1 to 2. We denote by
� and � the Poisson’s ratio and shear modulus, respectively. The
elastic stiffness tensor Cijkl is of the form

Cijkl = ��ij�kl + ���il� jk + �ik� jl� �1�

where �=2�� / �1−2�� and �ij is the Kronecker’s delta. The dis-
placement field induced by the uniform eigenstrain �ij

* can be
written as �see Ref. �2��

ui�x� = − Clkmn�mn
* �

�+

�xk
Gil�x − x��dx� �2�

where x is the observation point, inside or outside the inclusion,
and x� is the point inside �+. In this paper, the repeated indices
imply summation. Gij�x−x�� is the Green function for plane strain
problems and takes the form

Gil�x − x�� =
1

8	�1 − �����3 − 4���il log
1

�x − x��

+
�xi − xi���xl − xl��

�x − x��2
� �3�

By the Green formula, Eq. �2� yields

ui�x� = Clkmn�mn
* 	

�

Gil�x − x��nkdsx� �4�

where nk is the kth component of unit outer normal of �. Substi-
tuting the last equation into the geometric differential relations
between strains and displacements, we obtain the perturbed strain
field by the eigenstrains �ij

*

�ij�x� = Sijmn�x��mn
* �5�

with

Sijmn�x� =
Clkmn

2 	
�

nk��xj
Gil�x − x�� + �xi

Gjl�x − x���dsx� �6�

Sijmn�x� is known as the Eshelby tensor. Substituting the Green
function in Eq. �3� into the Eshelby tensor, one has

Sijmn�x� =
Clkmn

8	��1 − ��

2Jijlk�x� − �ijJlk�x�

+ �1 − 2����ilJjk�x� + � jlJik�x��� �7�
where

Jij�x� =	
�


i


2njdsx� �8�

Jijlk�x� =	
�


i
 j
l


4 nkdsx� �9�

with 
i=xi�−xi and 
= �x�−x�.
By the Green formula, the strain field for the Eshelby problem

of an arbitrary inclusion with uniform eigenstrains is given in the
form of the integral expressions. Equation �7� indicates the Es-
helby tensor only depends on the two integrals Jij�x� and Jijlk�x�.
Hence the discussion of the Eshelby tensor, and thus the strain
field, is reduced to the evaluation of Jij�x� and Jijlk�x�.
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3 The Complex Integral Representation of Jij„x… and
Jijlk„x… for Arbitrary Inclusions

We need further discussions on Jij�x� and Jijlk�x� shown in Eqs.
�8� and �9�, respectively, since the Eshelby tensors are fully de-
pendent on these two kinds of integrals. In this section, we will
obtain the complex integral expressions of Jij�x� and Jijlk�x�
which will be used in the next section to derive the arithmetic
mean theorem of Eshelby tensor for the rotational symmetrical
inclusions.

Taking advantage of the identities n1dsx�=dx2� and n2dsx�=
−dx1�, we can rewrite Jij�x� from Eq. �8� as follows

J12�x� = −	
�


1


2dx1�,J11�x� =	
�


1


2dx2� �10�

and

J22�x� = −	
�


2


2dx1�,J21�x� =	
�


2


2dx2� �11�

Introduce the complex plane z=x1+ ix2 with i2=−1. Then in the
complex plane, z and z� represent the points x and x�, respec-
tively. Thus, Eqs. �10� and �11� lead to

− J12�x� + iJ11�x� =	
�


1


2dz� �12�

− J22�x� + iJ21�x� =	
�


2


2dz� �13�

where z�=x1�+ ix2� is the point on the boundary of the inclusion.
Equations �12� and �13� are called the complex integral represen-
tation of Jij�x�. Similarly, one can obtain the complex integral
representation of Jijlk�x� from Eq. �9� as follows

− J1112�x� + iJ1111�x� =	
�


1
3


4dz� �14�

− J2222�x� + iJ2221�x� =	
�


2
3


4dz� �15�

− J1122�x� + iJ1121�x� =	
�


1
2
2


4 dz� �16�

− J2212�x� + iJ2211�x� =	
�


1
2
2


4 dz� �17�

Other components of Jijlk�x� can be given using the four obvious
relations:

J1122�x� = J1212�x� = J2112�x� �18�

J1121�x� = J1211�x� = J2111�x� �19�

J2212�x� = J2122�x� = J1222�x� �20�

J2211�x� = J2121�x� = J1221�x� �21�

The complex integral representation of Jij�x� and Jijlk�x� enables
us to take advantage of complex variable function theory in the
analysis of Eshelby problems. Next, we will find the universal
relations for Jij�x� and Jijlk�x� in virtue of the complex integral
representation.

By z�−z=
1+ i
2, we note that

	
�

1

z� − z
dz� =	

�

�z̄� − z̄�
�z� − z��z̄� − z̄�

dz� =	
�


1 − i
2


2 dz� �22�

Replacing Eq. �22� by Eqs. �12� and �13� and simplifying the
result, one obtains

	
�

1

z� − z
dz� = �J21�x� − J12�x�� + i�J11�x� + J22�x�� �23�

From the Cauchy integral formula �26�, Eq. �23� yields

�J21�x� − J12�x�� + i�J11�x� + J22�x�� = 2	i��x� �24�

where ��x� is the characteristic function of the inclusion

��x� = �1, x � �+

0, x � �− �25�

In the same way, we have

	
�

1

z� − z
dz� =	

�

�z� − z��z̄� − z̄�2

�z� − z�2�z̄� − z̄�2dz�

=	
�

�
1 + i
2��
1 − i
2�2


4 dz� �26�

By expanding Eq. �26�, replacing it by Eqs. �14�–�17�, and then
simplifying the result, one has

	
�

1

z� − z
dz� = �− J1112�x� − J2212�x� + J1121�x� + J2221�x��

+ i�J1111�x� + J2211�x� + J1122�x� + J2222�x��
�27�

By the Cauchy integral formula, Eq. �27� leads to

�− J1112�x� − J2212�x� + J1121�x� + J2221�x��

+ i�J1111�x� + J2211�x� + J1122�x� + J2222�x��

= 2	i��x� �28�

Equations �24� and �28� hold for arbitrarily shaped inclusion, as
long as it is a simply connected domain. Hence we refer to Eq.
�24� as the universal relation of Jij�x�, and Eq. �28� as the univer-
sal relation of Jijlk�x�.

Before ending this section, we provide several equations which
will be used in Sec. 4. Introduce three complex variable functions
of the form

L1�z� =	
�

�z� − z�
�z� − z��z̄� − z̄�

dz� =	
�

�z� − z�2�z̄� − z̄�
�z� − z�2�z̄� − z̄�2dz� �29�

L2�z� =	
�

�z̄� − z̄�3

�z� − z�2�z̄� − z̄�2dz� �30�

L3�z� =	
�

�z� − z�3

�z� − z�2�z̄� − z̄�2dz� �31�

Considering z�−z=
1+ i
2 and z̄�− z̄=
1− i
2, and then employ-
ing Eqs. �12� and �13� one gets from the first equation in Eq. �29�

L1�z� = �− J12�x� − J21�x�� + i�J11�x� − J22�x�� �32�

Similarly, by Eqs. �14�–�17�, we get from the second equation in
Eq. �29� and Eqs. �30� and �31�, respectively,

L1�z� = �− J1112�x� − J2212�x� − J2221�x� − J1121�x��

+ i�J1111�x� + J2211�x� − J2222�x� − J1122�x�� �33�
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L2�z� = �− J1112�x� + 3J2212�x� − J2221�x� + 3J1121�x��

+ i�J1111�x� − 3J2211�x� − J2222�x� + 3J1122�x�� �34�

L3�z� = �− J1112�x� + 3J2212�x� + J2221�x� − 3J1121�x��

+ i�J1111�x� − 3J2211�x� + J2222�x� − 3J1122�x�� �35�

The definition of Li�z� , i=1,2 ,3 shows that the Cauchy integral
formula is not valid for the three functions. However, they contain
all the components of Jij�x� and Jijlk�x�. As we will see in Sec. 4,
L1�z�, L2�z�, and L3�z� play critical roles in the calculation of the
arithmetic mean of Eshelby tensors for the rotational symmetrical
inclusions.

4 The Arithmetic Mean of Eshelby Tensors for the Ro-
tational Symmetrical Inclusions

In this section, we consider an N-fold �N�3 and N�4� rota-
tional symmetrical inclusion, see Fig. 1. That is, �+ in this section
is a rotational symmetrical inclusion. This is a new topic with
special consideration on the shape of inclusion and of practice
interests since the cross section of most reinforcements in com-
posites and most quantum wires in strained semiconductor devices
has a boundary composed of uniform curves with specified rota-
tional symmetry. Especially, the regular polygon inclusions, a spe-
cial kind of planar rotational symmetrical figure, have been found
in many nanostructures and studied by many researchers.

Suppose that x1 ,x2 , . . . ,xN are N rotational symmetrical points
which can be located inside or outside the inclusion, see Fig. 2.

We denote by S̄ijmn
a �x� the arithmetic mean of the Eshelby tensors

at x1 ,x2 , . . . ,xN, i.e.,

S̄ijmn
a �x� =

1

N
p=1

N

Sijmn�xp� �36�

where p=1,2 , . . . ,N, and

�x1
p

x2
p � = � cos

2	

N
�p − 1� sin

2	

N
�p − 1�

− sin
2	

N
�p − 1� cos

2	

N
�p − 1� ��x1

x2
� �37�

Equation �37� shows x1 ,x2 , . . . ,xN are N points which are defined
from x. Also, Eq. �37� tells us that x is the same point as x1. In
fact, due to the symmetry, x can represent any point of

x1 ,x2 , . . . ,xN. By substituting Eq. �7� into Eq. �36�, S̄ijmn
a �x� can

be written as

S̄ijmn
a �x� =

Clkmn

8	��1 − ��

2J̄ijlk

a �x� − �ijJ̄lk
a �x�

+ �1 − 2����ilJ̄ jk
a �x� + � jlJ̄ik

a �x��� �38�

where

J̄ij
a �x� =

1

N
p=1

N

Jij�xp� �39�

J̄ijlk
a �x� =

1

N
p=1

N

Jijlk�xp� �40�

In the complex plane, the rotational symmetrical points
x1 ,x2 , . . . ,xN are denoted by z1 ,z2 , . . . ,zN, respectively. Then, the
rotational symmetry �37� is transformed to

zk = �k−1z, k = 1,2, . . . ,N �41�

where �=exp�i�2	 /N��. Employing the definition of L1�z�, the
integral variable substitution z�=�k−1ẑ and considering the rota-
tional symmetry of the inclusion boundary, we have

L1�zk� =	
�

1

z̄� − �̄k−1z̄
dz� = �2�k−1�	

�

1

z̄̂ − z̄
dẑ = �2�k−1�L1�z�

�42�

Following the similar procedure, one has

L2�zk� = �̄2�k−1�L2�z� �43�

L3�zk� = �4�k−1�L3�z� �44�

Thus, when N�3 and N�4, the following equations hold

1

N
k=1

N

L1�zk� =
1

N
�1 + �2 + ¯ + �2�N−1��L1�z� = 0 �45�

1

N
k=1

N

L2�zk� =
1

N
�1 + �̄2 + ¯ + �̄2�N−1��L2�z� = 0 �46�

1

N
k=1

N

L3�zk� =
1

N
�1 + �4 + ¯ + �4�N−1��L3�z� = 0 �47�

By using the formula of L1�z� in Eq. �32�, Eq. �45� yields

�− J̄12
a �x� − J̄21

a �x�� + i�J̄11
a �x� − J̄22

a �x�� = 0 �48�

Similarly, utilizing the formulas of Li�z� , i=1,2 ,3 in Eqs.
�33�–�35�, we obtain from Eqs. �45�–�47�, respectively

�− J̄1112
a �x� − J̄2212

a �x� − J̄2221
a �x� − J̄1121

a �x��

+ i�J1111
a �x� + J̄2211

a �x� − J̄2222
a �x� − J̄1122

a �x�� = 0 �49�

�− J̄1112
a �x� + 3J̄2212

a �x� − J̄2221
a �x� + 3J̄1121

a �x��

+ i�J1111
a �x� − 3J̄2211

a �x� − J̄2222
a �x� + 3J̄1122

a �x�� = 0 �50�

Fig. 1 Rotational symmetrical inclusions

Fig. 2 Rotational symmetrical points
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�− J̄1112
a �x� + 3J̄2212

a �x� + J̄2221
a �x� − 3J̄1121

a �x��

+ i�J̄1111
a �x� − 3J̄2211

a �x� + J̄2222
a �x� − 3J̄1122

a �x�� = 0 �51�

Furthermore, using the universal relations of Jij�x� and Jijlk�x�,
i.e., Eqs. �24� and �28�, one obtains, respectively

�J̄21
a �x� − J̄12

a �x�� + i�J̄11
a �x� + J̄22

a �x�� = 2	i��x� �52�

and

�− J̄1112
a �x� − J̄2212

a �x� + J̄1121
a �x� + J̄2221

a �x��

+ i�J̄1111
a �x� + J̄2211

a �x� + J̄1122
a �x� + J̄2222

a �x�� = 2	i��x�
�53�

Combining Eqs. �48� and �52�, we obtain all components of J̄ij
a �x�

J̄ij
a �x� = 	�ij��x� �54�

Similarly, the combination of Eqs. �49�–�51� and �53� gives all

components of J̄ijlk
a �x�

J̄ijlk
a �x� =

	

4
��ij�kl + �ik� jl + �il� jk���x� �55�

Substituting Eqs. �54� and �55� into Eq. �38�, we obtain the arith-
metic mean of the Eshelby tensors at x1 ,x2 , . . . ,xN.

THEOREM. When �+ is an N-fold �N�3 and N�4� rotational
symmetrical inclusion

S̄ijmn
a �x� = � 4� − 1

8�1 − ��
�ij�mn +

3 − 4�

8�1 − ��
��in� jm + �im� jn����x�

�56�

where S̄ijmn
a �x� is defined in Eq. �36�, and ��x� in Eq. �25�. �

The theorem is given the name of the arithmetic mean theorem
of Eshelby tensors, which shows that although the elastic field
induced by an N-fold rotational symmetrical inclusion with uni-
form eigenstrains is nonuniform, the arithmetic mean of the
strains at N rotational symmetrical points have attractive proper-
ties. It shows that the arithmetic mean of the Eshelby tensors at N
rotational symmetrical interior points is the same as the Eshelby
tensor for a circular inclusion. This arithmetic mean theorem of
Eshelby tensors for interior points, also referred to as the quasi-
Eshelby property, has been acquired in a different method in our
previous works �21–23�.

Remarkably, Eq. �56� indicates that for any N-fold �N�3 and
N�4� rotational symmetrical inclusion, the arithmetic mean of
the Eshelby tensors at rotational symmetrical points outside the
inclusion is equal to zero. As we know, while the elastic field
within the ellipsoidal inclusion with uniform eigenstrains is uni-
form, the elastic field outside the inclusion does not possess any
kind of special property, according to the existing literature. Thus,
in some sense, the discovery of arithmetic mean theorem for ex-
terior points makes N-fold �N�3 and N�4� rotational symmetri-
cal inclusions more preferable than ellipsoidal inclusions. In the
next section, the Eshelby problem with a circular inclusion will be
used to check the arithmetic mean theorem for exterior points.
Here, we present two corollaries from the theorem.

Let �c�r ,o� be a circle which is totally outside the inclusion and
concentric with the inclusion, and the domain bounded by �c�r ,o�
is denoted by �c, see Fig. 3. Parameter r is the radius and O
represents the center of the rotational symmetrical inclusion do-
main �+. From the theorem, it is not difficult to obtain the first
corollary:

COROLLARY 1. For any N-fold �N�3 and N�4� rotational
symmetrical inclusion, the line integral average of Eshelby ten-
sors along �c�r ,o� is equal to zero, i.e.

S̄ijmn
c =

1

2	r	
�c�r,O�

Sijmn�x�ds = 0 �57�

where �c�r ,o� is a concentric circle which is totally outside the
inclusion, as shown in Fig. 3. �

It is easy to know from the theorem that the average Eshelby
tensor over the inclusion domain �+ is equal to the Eshelby tensor
for the circular inclusion. On the other hand, the arithmetic mean
theorem for exterior points implies that the area integral of Es-
helby tensors over the domain �c−�+ is equal to zero. Taking
advantage of these two facts, we obtain the area average of Es-
helby tensor over �c.

COROLLARY 2. For any N-fold �N�3 and N�4� rotational
symmetrical inclusion, the following equations hold

S̄ijmn�r� =
�

	r2� 4� − 1

8�1 − ��
�ij�mn +

3 − 4�

8�1 − ��
��in� jm + �im� jn��

�58�

where S̄ijmn�r� is the area average of Eshelby tensors over �c, and
� is the area of the inclusion �+. �

Corollary 1 shows that the line integral average of Eshelby
tensors along the concentric circle �c�r ,o� is equal to zero. Cor-
ollary 2 implies that the area average of Eshelby tensors over the
domain bounded by the circle �c�r ,o� is in direct proportion to the
area of the inclusion and in inverse proportion to the area of the
circle. The two corollaries are presented here to encourage the
possibility of application of the arithmetic mean theorem. For ex-
ample, on the basis of the equivalent inclusion method �2� and the
various approximate schemes �27–30�, these special properties
can be expected to be useful in the estimation of macroscopic
mechanics properties of the composites.

5 Arithmetic Mean of Eshelby Tensors for Circular
Inclusions

In the last section, we have proved that for any N-fold �N�3
and N�4� rotational symmetrical inclusion, the arithmetic mean
of Eshelby tensors at N rotational symmetrical points presents
special properties. The detailed discussions and remarks have
been given on the interior points in our former work �21�. How-
ever, the result for exterior points, which shows that arithmetic
mean of Eshelby tensors at N rotational symmetrical points out-
side the inclusion equals zero, has not been paid enough attention.
In order to remove the doubts from the readers, in this section the
circular inclusion is used to test the validity of the arithmetic
mean theorem for the exterior points. It is clear that a circle can be

Fig. 3 A concentric circle outside the inclusion
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treated as an arbitrary fold rotational symmetrical figure. Hence,
the arithmetic mean theorem implies that the arithmetic mean of
Eshelby tensors at any N rotational symmetrical points outside the
circular inclusion should be equal to zero, as long as N�3 and
N�4.

To make the testing process convincing, we will take the fol-
lowing steps: We start from the elastic solution of the exterior
field for the Eshelby problem with an ellipsoidal inclusion, which
has been obtained by Ferrers �24� and Dyson �25� and shown in
Mura’s monograph �2�. From the elastic solution for ellipsoidal
inclusions, we obtain the explicit solution for circular inclusions.
Then, by this explicit solution, we consider any N �N�3 and N
�4� rotational symmetrical points outside the inclusion and cal-
culate the arithmetic mean of Eshelby tensors at these points.
According to the arithmetic mean theorem, this arithmetic mean
has to equal zero. Otherwise, the arithmetic mean theorem is
not valid.

For the sake of the completeness, we first introduce the elastic
solution of the exterior field for the Eshelby problem with an
ellipsoidal inclusion by Ferrers and Dyson. Let a1 ,a2 ,a3 be the
principal half axes of the ellipsoidal inclusion. Ferrers and Dyson
gave the following elliptic integrals

Ii�� = 2	a1a2a3�


�
ds

�ai
2 + s� � �s�

�59�

Iij�� = 2	a1a2a3�


�
ds

�ai
2 + s��aj

2 + s� � �s�
�60�

where ��s�=��a1
2+s��a2

2+s��a3
2+s�, and  is the largest positive

root of the equation

x1
2

�a1
2 + ��

+
x2

2

�a2
2 + ��

+
x3

2

�a3
2 + ��

= 1 �61�

As shown in Chapter 2 in Ref. �2�, the induced strain field outside
the ellipsoidal inclusion can be written as

�ij�x� = Sijkl�x��kl
* �62�

where

8	�1 − ��Sijkl�x� = 8	�1 − ��Dijkl��� + 2��klxiII,j��� + �1 − ��

�
�ilxkIK,j��� + � jlxkIK,i��� + �ikxlIL,j���

+ � jkxlIL,i���� − �ijxk�IK��� − aI
2IKI����,l

− ��ikxj + � jkxi��IJ��� − aI
2IIJ����,l − ��ilxj

+ � jlxi��IJ��� − aI
2IIJ����,k − xixj�IJ���

− aI
2IIJ����,lk �63�

with

8	�1 − ��Dijkl��� = �ij�kl�2�II��� − IK��� + aI
2IKI����

+ ��ik� jl + � jk�il�
aI
2IIJ��� − IJ���

+ �1 − ���IK��� + IL����� �64�

In Eqs. �63� and �64�, upper case indices take on the same num-
bers as the corresponding lower case ones but are not summered.

Next, we reduce the ellipsoidal inclusion to a cylindrical inclu-
sion by supposing a1=a2=a and a3→ +�. Therefore, Eq. �61�
yields

� = x1
2 + x2

2 − a2 = r2 − a2 �65�

Correspondingly, Eqs. �59� and �60� give

I1��� = I2��� = 2	
a2

r2 , I3��� = 0 �66�

I11��� = I22��� = I12��� = 	
a2

r4 �67�

I13��� = I23��� = I33��� = 0 �68�

a3
2I13��� = I1���, a3

2I23��� = I2���, a3
2I33��� = 0 �69�

By Eqs. �65�–�69�, Eqs. �63� and �64� can be reduced to the solu-
tion for circular inclusions. Take S1111�x� as an example

8	�1 − ��S1111�x� = 2	�1 − 2��
a2

r2 + 3	
a4

r4 + �8� + 8�
a2x1

2

r4

− 24	
a4x1

2

r6 − 16	
a2x1

4

r6 + 24	
a4x1

4

r8 �70�

By using the polar coordination system, S1111�x� can be rewritten
as

8	�1 − ��S1111�x� = 2	�1 − 2��
a2

r2 + 3	
a4

r4 + �8� + 8�	
a2 cos2 �

r2

− 24	
a4 cos2 �

r4 − 16	
a2 cos4 �

r2

+ 24	
a4 cos4 �

r4 �71�

Taking advantage of two trigonometric identities

cos2 � = 1
2 �1 + cos 2�� �72�

cos4 � = 3
8 + 1

2 cos 2� + 1
8 cos 4� �73�

we write S1111�x� as

8	�1 − ��S1111�x� = 4�� − 1�	
a2 cos 2�

r2 − 2	
a2 cos 4�

r2

+ 3	
a4 cos 4�

r4 �74�

As previously mentioned, x1 ,x2 , . . . ,xN are N rotational sym-
metrical points defined from x by Eq. �37�. Employing Eq. �74�,
we have

8	�1 − ��S̄1111
a �x� = 4�� − 1�	

a2

r2 H1��� − 2	
a2

r2 H2��� + 3	
a4

r4 H2���

�75�

where

H1��� =
1

N
p=1

N

cos�2� +
4	

N
�p − 1�� �76�

H2��� =
1

N
p=1

N

cos�4� +
8	

N
�p − 1�� �77�

For any angle �, it is clear that


p=1

M

cos�� +
2L	

M
�p − 1�� + i

p=1

M

cos�� +
2L	

M
�p − 1��

= ei��1 + exp�i
2L	

M
� + ¯ + exp�i

2L	

M
�M − 1���

= ei� 1 − ei2L	

1 − exp� i2L	

M
� = 0 �78�

where M, L are integers while L /M is not an integer. When N
�3 and N�4, from Eq. �78� we observe H1���=H2���=0 for any
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�. Therefore, Eq. �75� gives S̄1111
a �x�=0. Similarly, we can prove

other components of S̄ijkl
a �x� also vanish. In other words, for cir-

cular inclusions, the arithmetic mean of Eshelby tensors at N ro-
tational symmetrical points outside the inclusion equals zero as
long as N�3 and N�4. Consequently, the validity of the arith-
metic mean theorem is checked safely.

6 Conclusions
The Eshelby problems with two-dimensional N-fold �N�3 and

N�4� rotational symmetrical inclusions are considered in this pa-
per. By making use of the Green formula and introducing the
complex plane, we have successfully proved that the arithmetic
mean of Eshelby tensors at N rotational symmetrical points, either
inside or outside the inclusion, possesses some special properties.
For the rotational symmetrical interior points, the arithmetic mean
of Eshelby tensors is a constant and equal to the Eshelby tensor
for the circular inclusion. This property also has been obtained in
our former work �21� in a different way and is referred to as the
quasi-Eshelby property, or the arithmetic mean theorem of Es-
helby tensors for interior points. For the rotational symmetrical
exterior points, the arithmetic mean of Eshelby tensors is proved
to be zero. This property is the major conclusion of this paper and
referred to as the arithmetic mean theorem of Eshelby tensors for
exterior points.

By the arithmetic mean theorem for exterior points, we present
two corollaries at the end of Sec. 4. The first corollary shows that
the line integral average of Eshelby tensors along a circle �c�r ,o�,
which is totally outside the inclusion and concentric with the in-
clusion, is equal to zero. The second corollary gives the area av-
erage of Eshelby tensors over the domain bounded by the circle
�c�r ,o�. We find this area average of Eshelby tensor is in direct
proportion to the area of the inclusion and in inverse proportion to
the area of the circle. The arithmetic mean theorems and their
corollaries are expected to be useful in the study of composites
and strained semiconductor devices.

To make the results of the arithmetic mean theorem more ac-
ceptable to the readers, we have considered a circular inclusion, a
special kind of rotational symmetrical inclusion, to test the theo-
rem. We have checked the arithmetic mean of Eshelby tensors at
any N �N�3 and N�4� rotational symmetrical points outside the
circular inclusion by the available solutions and they turn out to
be zero, just as the theorem suggests.
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Null-Field Integral Equation
Approach for Plate Problems With
Circular Boundaries
In this paper, a semi-analytical approach for circular plate problems with multiple cir-
cular holes is presented. Null-field integral equation is employed to solve the plate prob-
lems while the kernel functions in the null-field integral equation are expanded to degen-
erate kernels based on the separation of field and source points in the fundamental
solution. The unknown boundary densities of the circular plates are expressed in terms of
Fourier series. It is noted that all the improper integrals are transformed to series sum
and are easily calculated when the degenerate kernels and Fourier series are used. By
matching the boundary conditions at the collocation points, a linear algebraic system is
obtained. After determining the unknown Fourier coefficients, the displacement, slope,
normal moment, and effective shear force of the plate can be obtained by using the
boundary integral equations. Finally, two numerical examples are proposed to demon-
strate the validity of the present method and the results are compared with the available
exact solution, the finite element solution using ABAQUS software and the data of Bird
and Steele. �DOI: 10.1115/1.2165239�

1 Introduction
The boundary element method �BEM� by discretizing the

boundary integral equation �BIE� has been extensively applied to
engineering problems recently more than domain type methods,
e.g., finite element method �FEM� or finite difference method. It is
noted that improper integrals on the boundary should be handled
particularly when BEM is used. In the past, many researchers
proposed several regularization techniques to deal with the singu-
larity and hypersingularity. To determine the Cauchy principal
value and the Hadamard principal value in the singular and hy-
persingular integrals is a critical issue in BEM/BIEM �1�. The
technique of the integration by parts to reduce the order of singu-
larity �2� is an alternative. One order of singularity is shifted to the
density function from the kernel. In this paper, instead of using the
previous concepts, the kernel function is described in an analytical
form on each side �interior and exterior� by employing the sepa-
rable kernel since the potential is discontinuous across the bound-
ary. Therefore, degenerate kernel, namely separable kernel, is a
vital tool to study the perforated plate which satisfies the bihar-
monic equation.

BIEs for the plate problems were acquired from the Rayleigh-
Green identity �3,4� and the null-field integral equations were de-
rived by collocating the field point outside the domain. Null-field
integral equation in conjunction with degenerate kernel is pro-
posed to solve the biharmonic problems with circular boundaries.
It is well known that Fourier series is always incorporated to
formulate the solution for problems with circular boundaries
�5–8�. Bird and Steele �5� presented a Fourier series procedure to
solve circular plate problems containing multiple circular holes in
a similar way to the Trefftz method by adopting the interior and
exterior T-complete sets. Either the interior or exterior bases in the
Trefftz method are embedded in degenerate kernels �9�. A bridge
to connect the Trefftz method and method of fundamental solution

was constructed by using the degenerate kernels �9�. The Fourier
series procedure can solve the circular plate problems regardless
of the number, location, and size of circular holes. Also, Crouch
and Mogilevskaya �6� presented a method for solving problems
with circular boundaries. Their formulation is based on real-
variable approach. Mogilevskaya and Crouch �8� have used the
Galerkin method instead of collocation technique. Our approach
can be extended to the Galerkin formulation only for the circular
and annular cases. However, it may encounter difficulty for the
eccentric example. Two requirements are needed: degenerate ker-
nel expansion must be available and distinction of interior and
exterior expression must be separated. Therefore, the collocation
angle of f is not in the range 0 to 2p in our adaptive observer
system. This is the reason why we cannot formulate in terms of
Galerkin formulation using orthogonal properties twice. Free of
worrying how to choose the collocation points, uniform colloca-
tion along the circular boundary yields a well-posed matrix. On
the other hand, Bird and Steele �5� have also used separated so-
lution procedure for bending of circular plates with circular holes
in a similar way to the Trefftz method and addition theorem. They
used the so-called method of series and addition theorem. Addi-
tion theorems are re-expansion formulas for the special functions
�e.g., Bessel function, Legendre functions, surface spherical har-
monics, etc.� in a transferred coordinate system �see, e.g., Grad-
shteyn and Ryzhik Table of Integrals �7��. Bird and Steele sought
the solution of the original problem as the superposition of the
solutions for a single hole problem. After taking the limit to the
boundary of each hole, Bird and Steele got the equation that
linked the Fourier series with the known coefficients used to ap-
proximate the boundary condition with the Fourier series with the
unknown coefficients obtained from the solution process. The
Fourier series from both sides of the equation were written in the
same coordinate system, so the unknown coefficients were found
by using orthogonal properties of the terms involved in the Fou-
rier series �10�. To the authors’ best knowledge, null-field integral
equations and degenerate kernels were not employed to fully cap-
ture the circular boundaries although Fourier series expansion was
used in previous research �5,6,8,11�. Jeffery �12� and Ling �13�
adopted the bipolar coordinate system to derive the solution of
stress for the plate problems since it is recognized as the best
treatment for analyzing the biharmonic problem with two circular
boundaries. Nevertheless, an analytical approach may be hindered
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for the complicated problems with more than two holes. Develop-
ing a systematic method to solve problems with several holes is
not trivial.

The purpose of this paper is to study biharmonic problems with
circular boundaries by using the null-field integral formulation in
conjunction with degenerate kernels and Fourier series. According
to the degenerate kernels, null-field integral formulation and Fou-
rier series in the adaptive coordinate system, a linear algebraic
system is constructed by matching the boundary conditions at the
collocation points. After determining the Fourier coefficients, the
displacement, slope, moment, and shear force of the plate with
circular boundaries can be obtained by using the boundary inte-
gral equations for the domain point. In the polar coordinate sys-
tem, the calculation of potential gradients in the normal and tan-
gential directions for the non-concentric domain must be
determined with care. Therefore, the technique of vector decom-
position is adopted to deal with the problem for the non-
concentric plate. Finally, several examples are presented to show
the validity of the present method and some conclusions are made.

2 Problems Statement for a Plate
Consider a Kirchhoff plate for the two-dimensional domain un-

der the distributed load w�x�, the governing equation is written as
follows

�4u*�x� =
w�x�

D
, x � � �1�

where u*�x� is the lateral displacement, � is the domain of the
thin plate, D is the flexural rigidity of the plate which is expressed
as

D =
Eh3

12�1 − �2�
�2�

in which E is Young’s modulus, � denotes the Poisson ratio, and h
is the plate thickness. For simplicity, the clamped case is consid-
ered

u*�x� = 0, �*�x� = 0, x � B �3�

where B is the boundary of the domain and �*�x� is the slope.
Since the governing equation contains the body force, Eq. �1� can
be reformulated to the homogeneous equation by using the split-
ting method as follows

�4u�x� = 0, x � � �4�
and the essential boundary conditions are changed to

u�x� = ū�x�, ��x� = �̄�x�, x � B �5�

as shown in Fig. 1, where u�x� is the displacement and ��x� is the
slope of the plate.

3 Formulation

3.1 Integral Equation for the Collocation Point in the
Domain. The boundary integral equations for the domain point
can be derived from the Rayleigh-Green identity �3,4� as follows

8�u�x� = −�
B

U�s,x�v�s�dB�s� +�
B

��s,x�m�s�dB�s�

−�
B

M�s,x���s�dB�s� +�
B

V�s,x�u�s�dB�s�, x � �

�6�

8���x� = −�
B

U��s,x�v�s�dB�s� +�
B

���s,x�m�s�dB�s�

−�
B

M��s,x���s�dB�s� +�
B

V��s,x�u�s�dB�s�, x � �

�7�

8�m�x� = −�
B

Um�s,x�v�s�dB�s� +�
B

�m�s,x�m�s�dB�s�

−�
B

Mm�s,x���s�dB�s� +�
B

Vm�s,x�u�s�dB�s�, x � �

�8�

8�v�x� = −�
B

Uv�s,x�v�s�dB�s� +�
B

�v�s,x�m�s�dB�s�

−�
B

Mv�s,x���s�dB�s� +�
B

Vv�s,x�u�s�dB�s�, x � �

�9�

where B is the boundary of the domain �, u�x�, ��x�, m�x�, and
v�x� are the displacement, slope, moment, and shear force, s and x
mean the source and field points, respectively. The kernel func-
tions U, �, M, V, U�, ��, M�, V�, Um, �m, Mm, Vm, Uv, �v, Mv,
Vv in Eqs. �6�–�9�, which are expanded to degenerate kernels by
using the separation of source and field points, will be elaborated
on later. The kernel function U�s ,x� in Eq. �6� is the fundamental
solution which satisfies

�4U�s,x� = 8���s − x� �10�

where ��s−x� is the Dirac-delta function. Therefore, the funda-
mental solution can be obtained

U�s,x� = r2 ln r �11�

where r is the distance between the source point s and field point
x. The relationship among u�x�, ��x�, m�x�, and v�x� is shown as
follows

��x� = K�,x�u�x�� =
�u�x�
�nx

�12�

m�x� = Km,x�u�x�� = ��x
2u�x� + �1 − ��

�2u�x�
�2nx

�13�

v�x� = Kv,x�u�x�� =
��x

2u�x�
�nx

+ �1 − ��
�

�tx
�ni�x�tj�x�u,ij�x��

�14�

where K�,x�·�, Km,x�·�, Kv,x�·� are the slope, moment, and shear
force operators with respect to the point x, � /�nx is the normal
derivative with respect to the field point x, � /�tx is the tangential
derivative with respect to the field point x, �x

2 means the Laplac-
ian operator, and � is the Poisson ratio.

Fig. 1 The perforated Kirchhoff plate subject to the essential
boundary conditions
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3.2 Null-Field Integral Equations. The null-field integral
equations are obtained by collocating the field point x outside the
domain as follows

0 = −�
B

U�s,x�v�s�dB�s� +�
B

��s,x�m�s�dB�s�

−�
B

M�s,x���s�dB�s� +�
B

V�s,x�u�s�dB�s�, x � �C

�15�

0 = −�
B

U��s,x�v�s�dB�s� +�
B

���s,x�m�s�dB�s�

−�
B

M��s,x���s�dB�s� +�
B

V��s,x�u�s�dB�s�, x � �C

�16�

0 = −�
B

Um�s,x�v�s�dB�s� +�
B

�m�s,x�m�s�dB�s�

−�
B

Mm�s,x���s�dB�s� +�
B

Vm�s,x�u�s�dB�s�, x � �C

�17�

0 = −�
B

Uv�s,x�v�s�dB�s� +�
B

�v�s,x�m�s�dB�s�

−�
B

Mv�s,x���s�dB�s� +�
B

Vv�s,x�u�s�dB�s�, x � �C

�18�

where �C is the complementary domain of �. Since the four

equations of Eqs. �15�–�18� in the plate formulation are provided,
there are six �C2

4� options for choosing any two equations to solve
the problems. For simplicity, Eqs. �15� and �16� are used to ana-
lyze the plate problems. In the real implementation, the point in
the null-field integral equation is moved to the boundary from �C

such that the kernel functions can be expressed in terms of appro-
priate forms of degenerate kernels. Novelly, all the improper in-
tegrals disappear and transform to series sum in the BIEs since the
potential across the boundary can be determined in both sides by
using degenerate kernels.

3.3 Expansion of Fourier Series for Boundary Densities.
The displacement u�s�, slope ��s�, moment m�s�, and shear force
v�s� along the circular boundaries in the null-field integral equa-
tions are expanded in terms of Fourier series, which are expressed
as follows

u�s� = c0 + �
n=1

M

�cn cos n� + dn sin n��, s � B �19�

��s� = g0 + �
n=1

M

�gn cos n� + hn sin n��, s � B �20�

m�s� = a0 + �
n=1

M

�an cos n� + bn sin n��, s � B �21�

v�s� = p0 + �
n=1

M

�pn cos n� + qn sin n��, s � B �22�

where a0, an, bn, c0, cn, dn, g0, gn, hn, p0, pn, and qn are the
Fourier coefficients and M is the number of Fourier series terms.

3.4 Expansion of Kernels. By employing the separation
technique for the source and field points, the kernel function
U�s ,x� can be expanded in terms of degenerate kernel in a series
form �14� as shown in the following

U�s,x� = r2 ln r =�
UI�s,x� = �2�1 + ln R� + R2 ln R − �R��1 + 2 ln R� +

1

2

�3

R
	cos�� − ��

− �
m=2

	 � 1

m�m + 1�
�m+2

Rm −
1

m�m − 1�
�m

Rm−2	cos�m�� − ���, R 
 � �23a�

UE�s,x� = R2�1 + ln �� + �2 ln � − ��R�1 + 2 ln �� +
1

2

R3

�
	cos�� − ��

− �
m=2

	 � 1

m�m + 1�
Rm+2

�m −
1

m�m − 1�
Rm

�m−2	cos�m�� − ���, � � R �23b�

where the superscripts “I” and “E” denote the interior and exterior
cases of U�s ,x� kernel depending on the geometry as shown in
Fig. 2. The other kernels in the boundary integral equations can be
obtained by utilizing the operators of Eqs. �12�–�14� with respect
to the U�s ,x� kernel. The degenerate kernels U, �, M, V, U�, ��,
M�, and V� in Eqs. �15� and �16� are listed in Appendix A. It is
noted that the interior and exterior cases of U, �, M, U�, and ��

are the same when they both approach to the boundary ��=R�,
since the degenerate kernels are continuous functions across the
boundary. Then, the kernel function with the superscript “I”is cho-
sen while the field point is inside the circular region; otherwise,
the kernels with the superscript “E” are chosen.

4 Adaptive Observer System and Vector Decomposi-
tion for the Slope

4.1 Adaptive Observer System. Consider a plate problem
with circular boundaries as shown in Fig. 3. Since the boundary
integral equations are frame indifferent, i.e., rule of objectivity is
obeyed. Adaptive observer system is chosen to fully employ the
circular property by expanding the kernels into degenerate forms.
The origin of the observer system can be adaptively located on the
center of the corresponding boundary contour under integration.
The dummy variable in the circular contour integration is the
angle ��� instead of radial coordinate �R�. By using the adaptive
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system, all the boundary integrals can be determined analytically
free of principal value senses.

4.2 Vector Decomposition. Since the higher-order singular
equation is also one alternative to deal with the plate problem,
potential gradient or higher-order gradients is required to calculate
carefully. For the non-concentric case, special treatment for the
potential gradient should be given as the source and field points
locate on different circular boundaries. As shown in Fig. 4, the
true normal direction with respect to the collocation point x on the
Bi boundary can be superimposed by using the radial direction e>�

and angular direction e>� on the Bj boundary. The degenerate ker-
nels in Eq. �16� for the higher-order singular equation are changed
to

Un�s,x� =
�U�s,x�

�nx
cos�� − ��� +

�U�s,x�
�tx

cos
�

2
− � + ���

�24�

�n�s,x� =
���s,x�

�nx
cos�� − ��� +

���s,x�
�tx

cos
�

2
− � + ���

�25�

Mn�s,x� =
�M�s,x�

�nx
cos�� − ��� +

�M�s,x�
�tx

cos
�

2
− � + ���

�26�

Vn�s,x� =
�V�s,x�

�nx
cos�� − ��� +

�V�s,x�
�tx

cos
�

2
− � + ���

�27�

The tangential derivative � /�tx with respect to the field point x for
the four kernels needs to be additionally derived and is listed in
Appendix A, where the normal derivative � /�nx is � /��, and has
been derived in the U�, ��, M�, and V� kernels. We call this
treatment “vector decomposition technique.” By approaching the
collocation point from �C to Bi and integrating circle Bj using the
adaptive observer system of origin Oj, the normal and tangent
derivatives can be superimposed as follows

�

��i
=

�

�� j
cos��i − � j�� +

1

� j

�

�� j
cos
�

2
− �i + � j�� �28�

1

�i

�

��i
=

�

�� j
cos
�

2
− �i + � j�� +

1

� j

�

�� j
cos��i − � j�� �29�

5 Linear Algebraic System
Consider the plate problem with circular domain containing Nh

randomly distributed circular holes centered at the position vector
c> j �j=1,2 , . . . ,N�, �N=Nh+1 and c>1 is the position vector of the
outer circular boundary for the plate�, as shown in Fig. 5 in which
Rj denotes the radius of the jth circular region and Bj is the
boundary of the jth circular hole. By uniformly collocating the
2M +1 points x on each circular boundary in Eqs. �15� and �16�,
we have

0 = �
j=1

N �
Bj

�− U�s,x�v�s� + ��s,x�m�s� − M�s,x���s�

+ V�s,x�u�s�dBj�s�, x � �C �30�

0 = �
j=1

N �
Bj

�− U��s,x�v�s� + ���s,x�m�s� − M��s,x���s�

+ V��s,x�u�s�dBj�s�, x � �C �31�
It is noted that we select the null-field point on the boundary in the
real computation. The selection of interior or exterior degenerate
kernels depends on r�R or r�R, respectively, according to the

Fig. 2 Degenerate kernel for U„s ,x…

Fig. 3 Adaptive observer system when integrating the corre-
sponding circular boundaries

Fig. 4 Vector decomposition „collocation on x and integration
on Bj…
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observer system. Besides, the path is counterclockwise for the
outer circle; otherwise, it is clockwise. For the integral of the
circular boundary, the degenerate kernels of U�s ,x�, ��s ,x�,
M�s ,x�, V�s ,x�, U��s ,x�, ���s ,x�, M��s ,x�, and V��s ,x� are uti-
lized while the boundary densities of u�s�, ��s�, m�s�, and v�s�
along the circular boundary are substituted by using the Fourier
series of Eqs. �19�–�22�, respectively. In the Bj integration, the
origin of the observer system is adaptively set to collocate at the
center cj to novelly utilize the degenerate kernels and Fourier
series. A linear algebraic system

�
U11 �11 U12 �12 ¯ U1N �1N

U11� �11� U12� �12� ¯ U1N� �1N�

U21 �21 U22 �22 ¯ U2N �2N

U21� �21� U22� �22� ¯ U2N� �2N�

� � � � � � �
UN1 �N1 UN2 �N2 ¯ UNN �NN

UN1� �N1� UN2� �N2� ¯ UNN� �NN�

��
v1

m1

v2

m2

�
vN

mN

�
= �

M11 V11 M12 V12 ¯ M1N V1N

M11� V11� M12� V12� ¯ M1N� V1N�

M21 V21 M22 V22 ¯ M2N V2N

M21� V21� M22� V22� ¯ M2N� V2N�

� � � � � � �
MN1 VN1 MN2 VN2 ¯ MNN VNN

MN1� VN1� MN2� VN2� ¯ MNN� VNN�

�
�

�1

u1

�2

u2

�
�N

uN

� �32�

is obtained, where N denotes the number of circular boundaries
�including inner and outer circular boundaries�. For brevity, a uni-
fied form �Uij� �i=1,2 ,3 , . . . ,N and j=1,2 ,3 , . . . ,N� denote the
response of U�s ,x� kernel at the ith circle point due to the source
at the jth circle. Otherwise, the same definition for ��ij�, �Mij�,
�Vij�, �Uij��, ��ij��, �Mij��, and �Vij�� cases. The submatrices of
�Uij�, ��ij�, �Mij�, �Vij�, �Uij��, ��ij��, �Mij��, and �Vij�� are
defined as follows

�Uij� = �
Uij0c��1� Uij1c��1� Uij1s��1� ¯ UijMc��1� UijMs��1�
Uij0c��2� Uij1c��2� Uij1s��2� ¯ UijMc��2� UijMs��2�
Uij0c��3� Uij1c��3� Uij1s��3� ¯ UijMc��3� UijMs��3�

� � � � � �
Uij0c��2M� Uij1c��2M� Uij1s��2M� ¯ UijMc��2M� UijMs��2M�

Uij0c��2M+1� Uij1c��2M+1� Uij1s��2M+1� ¯ UijMc��2M+1� UijMs��2M+1�
� �33�

��ij� = �
�ij0c��1� �ij1c��1� �ij1s��1� ¯ �ijMc��1� �ijMs��1�
�ij0c��2� �ij1c��2� �ij1s��2� ¯ �ijMc��2� �ijMs��2�
�ij0c��3� �ij1c��3� �ij1s��3� ¯ �ijMc��3� �ijMs��3�

� � � � � �
�ij0c��2M� �ij1c��2M� �ij1s��2M� ¯ �ijMc��2M� �ijMs��2M�

�ij0c��2M+1� �ij1c��2M+1� �ij1s��2M+1� ¯ �ijMc��2M+1� �ijMs��2M+1�
� �34�

�Mij� = �
Mij0c��1� Mij1c��1� Mij1s��1� ¯ MijMc��1� MijMs��1�
Mij0c��2� Mij1c��2� Mij1s��2� ¯ MijMc��2� MijMs��2�
Mij0c��3� Mij1c��3� Mij1s��3� ¯ MijMc��3� MijMs��3�

� � � � � �
Mij0c��2M� Mij1c��2M� Mij1s��2M� ¯ MijMc��2M� MijMs��2M�

Mij0c��2M+1� Mij1c��2M+1� Mij1s��2M+1� ¯ MijMc��2M+1� MijMs��2M+1�
� �35�

Fig. 5 Collocation point and boundary contour integration in
the null-field integral equation
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�Vij� = �
Vij0c��1� Vij1c��1� Vij1s��1� ¯ VijMc��1� VijMs��1�
Vij0c��2� Vij1c��2� Vij1s��2� ¯ VijMc��2� VijMs��2�
Vij0c��3� Vij1c��3� Vij1s��3� ¯ VijMc��3� VijMs��3�

� � � � � �
Vij0c��2M� Vij1c��2M� Vij1s��2M� ¯ VijMc��2M� VijMs��2M�

Vij0c��2M+1� Vij1c��2M+1� Vij1s��2M+1� ¯ VijMc��2M+1� VijMs��2M+1�
� �36�

�Uij�� = �
Uij�

0c��1� Uij�
1c��1� Uij�

1s��1� ¯ Uij�
Mc��1� Uij�

Ms��1�
Uij�

0c��2� Uij�
1c��2� Uij�

1s��2� ¯ Uij�
Mc��2� Uij�

Ms��2�
Uij�

0c��3� Uij�
1c��3� Uij�

1s��3� ¯ Uij�
Mc��3� Uij�

Ms��3�
� � � � � �

Uij�
0c��2M� Uij�

1c��2M� Uij�
1s��2M� ¯ Uij�

Mc��2M� Uij�
Ms��2M�

Uij�
0c��2M+1� Uij�

1c��2M+1� Uij�
1s��2M+1� ¯ Uij�

Mc��2M+1� Uij�
Ms��2M+1�

� �37�

��ij�� = �
�ij�

0c��1� �ij�
1c��1� �ij�

1s��1� ¯ �ij�
Mc��1� �ij�

Ms��1�
�ij�

0c��2� �ij�
1c��2� �ij�

1s��2� ¯ �ij�
Mc��2� �ij�

Ms��2�
�ij�

0c��3� �ij�
1c��3� �ij�

1s��3� ¯ �ij�
Mc��3� �ij�

Ms��3�
� � � � � �

�ij�
0c��2M� �ij�

1c��2M� �ij�
1s��2M� ¯ �ij�

Mc��2M� �ij�
Ms��2M�

�ij�
0c��2M+1� �ij�

1c��2M+1� �ij�
1s��2M+1� ¯ �ij�

Mc��2M+1� �ij�
Ms��2M+1�

� �38�

�Mij�� = �
Mij�

0c��1� Mij�
1c��1� Mij�

1s��1� ¯ Mij�
Mc��1� Mij�

Ms��1�
Mij�

0c��2� Mij�
1c��2� Mij�

1s��2� ¯ Mij�
Mc��2� Mij�

Ms��2�
Mij�

0c��3� Mij�
1c��3� Mij�

1s��3� ¯ Mij�
Mc��3� Mij�

Ms��3�
� � � � � �

Mij�
0c��2M� Mij�

1c��2M� Mij�
1s��2M� ¯ Mij�

Mc��2M� Mij�
Ms��2M�

Mij�
0c��2M+1� Mij�

1c��2M+1� Mij�
1s��2M+1� ¯ Mij�

Mc��2M+1� Mij�
Ms��2M+1�

� �39�

�Vij�� = �
Vij�

0c��1� Vij�
1c��1� Vij�

1s��1� ¯ Vij�
Mc��1� Vij�

Ms��1�
Vij�

0c��2� Vij�
1c��2� Vij�

1s��2� ¯ Vij�
Mc��2� Vij�

Ms��2�
Vij�

0c��3� Vij�
1c��3� Vij�

1s��3� ¯ Vij�
Mc��3� Vij�

Ms��3�
� � � � � �

Vij�
0c��2M� Vij�

1c��2M� Vij�
1s��2M� ¯ Vij�

Mc��2M� Vij�
Ms��2M�

Vij�
0c��2M+1� Vij�

1c��2M+1� Vij�
1s��2M+1� ¯ Vij�

Mc��2M+1� Vij�
Ms��2M+1�

� �40�

where �k �k=1,2 ,3 , . . . ,2M +1� is the kth collocation angle of
the collocation points on each boundary and the element of the
submatrices are defined as follows

Uijnc��k� =�
Bj

U�s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M

�41�

Uijns��k� =�
Bj

U�s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M

�42�

�ijnc��k� =�
Bj

��s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M

�43�

�ijns��k� =�
Bj

��s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M

�44�

Mijnc��k� =�
Bj

M�s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M

�45�

Mijns��k� =�
Bj

M�s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M

�46�
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Vijnc��k� =�
Bj

V�s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M

�47�

Vijns��k� =�
Bj

V�s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M

�48�

Uij�
nc��k� =�

Bj

U��s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M

�49�

Uij�
ns��k� =�

Bj

U��s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M

�50�

�ij�
nc��k� =�

Bj

���s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M

�51�

Fig. 6 Boundary integral equation for the domain point

Fig. 7 Flowchart of the present method

Fig. 8 An annular plate subject to the essential boundary
conditions

Fig. 9 The contour plot of displacement for the annular plate
subject to the essential boundary conditions by using a differ-
ent method
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�ij�
ns��k� =�

Bj

���s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M

�52�

Mij�
nc��k� =�

Bj

M��s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M

�53�

Mij�
ns��k� =�

Bj

M��s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M

�54�

Vij�
nc��k� =�

Bj

V��s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M

�55�

Vij�
ns��k� =�

Bj

V��s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M

�56�

where the interior degenerate kernels are used for j=1, i
=2,3 , . . . ,N and i= j=2,3 ,4 , . . . ,N; otherwise, exterior degener-
ate kernels are used. The explicit forms of the boundary integral
for U kernel are listed in Appendix B. Finite value of singularity is
obtained after introducing the degenerate kernel. Besides, the lim-
iting case across the boundary �R−=r=R+� is also addressed. In-

Fig. 10 Error estimation of the moment and shear force on the boundaries for the concentric circular domain
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stead of boundary data in BEM, the Fourier coefficients become
the new unknown degree of freedom in the formulation. By rear-
ranging the known and unknown sets, the Fourier coefficients can
be obtained. Since the boundary data are determined, the displace-
ment, slope, normal moment, and effective shear force of the plate
can be solved by using the boundary integral equations for the
domain point as shown in Fig. 6. The procedure of solution is
described in a flowchart as shown in Fig. 7.

6 Numerical Results and Discussions
Case 1: An annular plate. An annular circular plate subject to

the essential boundary conditions is considered as shown in Fig. 8.
The unknown boundary densities of the plate are expressed in
terms of Fourier series and the numerical result using fewer bases
of Fourier series terms �M =10� is shown in Fig. 9�a�. The annular
case was also solved by using the FEM software �ABAQUS� �15�
with 3,600 triangle elements as shown in Fig. 9�c�. Good agree-
ment is made after comparison with the exact solution,

u��,�� = � sin � −
4

�
sin �, 1 � � � 2, 0 � � � 2� �57�

as shown in Fig. 9�b� and the FEM result is shown in Fig. 9�d�.
Since the exact solution is known, error estimation can be es-

tablished. The boundary densities of the annular circular plate,
normal moment, and effective shear force can be obtained by
using the operators of Eqs. �13� and �14� with respect to the field
point x. By substituting �1=2 and �2=1 into the two equations,
the moment and the shear force on the boundaries of the annular
plate are

m1�x� = �� − 1�sin �, x � B1, 0 � � � 2� �58�

v1�x� =
� − 1

2
sin � ,x � B1, 0 � � � 2� �59�

m2�x� = 8�� − 1�sin �, x � B2, 0 � � � 2� �60�

v2�x� = 8�1 − ��sin �, x � B2, 0 � � � 2� �61�
The numerical results of the moment and the shear force expanded
in fewer bases of Fourier series �M =10� agree well with Eqs.
�58�–�61� and are shown in Fig. 10.

Case 2: A circular plate with three holes �5�. A circular plate
with the three circular holes which had been solved by Bird and
Steele �5� is revisited by using the present method. The geometric
data and the essential boundary conditions are shown in Fig. 11.
The contour plots of displacement by using different numbers of
terms in the Fourier series �M =10,20,30,40,50� are shown in
Figs. 12�a�–12�e�. It also shows that convergence is good with
increasing of the terms of Fourier series. The case was also solved
by using the ABAQUS software with 6,606 triangle elements as
shown in Fig. 12�g�. Good agreement among the data of Bird and
Steele �5� as shown in Fig. 12�f�, ABAQUS software results as
shown in Fig. 12�h�, and present solutions is obtained. To discuss
the convergence of Fourier series, Parseval sum

�
0

2�

f2���d� = 2�a0
2 + ��

n=1

	

�an
2 + bn

2� �62�

versus terms of Fourier series with respect to m1, v1, m2, v2, m3,
v3, m4, v4 �determined moment and shear force on the boundaries�
are shown in Fig. 13, where f��� is the expansion of Fourier series
and a0, an, and bn are the Fourier coefficients.

7 Conclusions
For plate problems with circular boundaries, a semi-analytical

solution by using degenerate kernels, null-field integral equation,
and Fourier series in an adaptive observer system was obtained.
The main advantage of the present method over BEM is that all
the improper integrals are transformed to series sum and can be

Fig. 11 A circular plate containing three circular holes subject
to the essential boundary conditions

Fig. 12 The contour plots of displacement for the plate con-
taining three circular holes subject to the essential boundary
conditions by using different methods
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Fig. 13 Parseval sum versus terms of Fourier series
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easily calculated when degenerate kernels are used. The potential
across the boundary can be described explicitly from both sides
�interior and exterior�. Also, discretization of boundaries is not
required. Once the Fourier coefficients of the unknown boundary
densities were determined, the displacement, slope, moment, and
shear force of the circular plate can be easily determined by sub-
stituting the boundary densities into the boundary integral equa-

tions for the domain point. Not only the annular plate but also the
plate problems with multiple holes have been solved easily and
effectively by using the present method in comparison with avail-
able exact solution and FEM results. The present method can be
applied to plate containing arbitrary number of circular holes as
well as various sizes and positions of circular holes. Finally, con-
vergence study on the Fourier series was also done.

Appendix A: Degenerate Kernels

Degenerate kernels for U, �, M, V in the first boundary integral equation

U�s,x� =�
UI�s,x� = �2�1 + ln R� + R2 ln R − �R��1 + 2 ln R� +

1

2

�3

R
	cos�� − ��

− �
m=2

	 � 1

m�m + 1�
�m+2

Rm −
1

m�m − 1�
�m

Rm−2	cos�m�� − ���, R 
 �

UE�s,x� = R2�1 + ln �� + �2 ln � − ��R�1 + 2 ln �� +
1

2

R3

�
	cos�� − ��

− �
m=2

	 � 1

m�m + 1�
Rm+2

�m −
1

m�m − 1�
Rm

�m−2	cos�m�� − ���, � � R

��s,x� =�
�I�s,x� =

�2

R
+ R�1 + 2 ln R� − ���3 + 2 ln R� −

1

2

�3

R2	cos�� − ��

+ �
m=2

	 � 1

m + 1

�m+2

Rm+1 −
m − 2

m�m − 1�
�m

Rm−1	cos�m�� − ���, R 
 �

�E�s,x� = 2R�1 + ln �� − ���1 + 2 ln �� +
3

2

R2

�
	cos�� − ��

− �
m=2

	 � m + 2

m�m + 1�
Rm+1

�m −
1

m − 1

Rm−1

�m−2	cos�m�� − ���, � � R

M�s,x� =�
MI�s,x� = �� − 1�

�2

R2 + �� + 3� + 2�� + 1�ln R − ��� + 1� −
2�

R
− �� − 1�

�3

R3	cos�� − ��

+ �
m=2

	 ��� − 1�
�m+2

Rm+2 +
m�1 − �� − 2�1 + ��

m

�m

Rm	cos�m�� − ���, R 
 �

ME�s,x� = 2�1 + ���1 + ln �� − �� + 3�
R

�
cos�� − ��

+ �
m=2

	 �m�� − 1� − 2�� + 1�
m

Rm

�m + �1 − ��
Rm−2

�m−2	cos�m�� − ��� � � R

V�s,x� =�
VI�s,x� =

4

R
+ �2�

R2 − �3 − ��
�3

R4 �1 − ��	cos�� − ��

− �
m=2

	 �m�1 − ��
�m+2

Rm+3 − �4 + m�1 − ���
�m

Rm+1	cos�m�� − ���, R � �

VE�s,x� = �− 3 − ��
1

�
cos�� − ��

+ �
m=2

	 ��m�1 − �� − 4�
Rm−1

�m − m�1 − ��
Rm−3

�m−2	cos�m�� − ���, � � R
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Degenerate kernels for U�, ��, M�, V� in the second boundary integral equation

U��s,x� =�
U�

I �s,x� = 2��1 + ln R� − �R�1 + 2 ln R� +
3

2

�2

R
	cos�� − ��

− �
m=2

	 � m + 2

m�m + 1�
�m+1

Rm −
1

m − 1

�m−1

Rm−2	cos�m�� − ���, R 
 �

U�
E�s,x� =

R2

�
+ ��1 + 2 ln �� − �R�3 + 2 ln �� −

1

2

R3

�2	cos�� − ��

+ �
m=2

	 � 1

m + 1

Rm+2

�m+1 −
m − 2

m�m − 1�
Rm

�m−1	cos�m�� − ���, � � R

���s,x� =�
��

I �s,x� =
2�

R
− ��3 + 2 ln R� −

3

2

�2

R2	cos�� − ��

+ �
m=2

	 �m + 2

m + 1

�m+1

Rm+1 −
m − 2

m − 1

�m−1

Rm−1	cos�m�� − ���, R 
 �

��
E�s,x� =

2R

�
− ��3 + 2 ln �� −

3

2

R2

�2	cos�� − ��

+ �
m=2

	 �m + 2

m + 1

Rm+1

�m+1 −
m − 2

m − 1

Rm−1

�m−1	cos�m�� − ���, � � R

M��s,x� =�
M�

I �s,x� =
2�

R2 �� − 1� − � 2

R
�� + 1� − 3�� − 1�

�2

R3	cos�� − ��

+ �
m=2

	 ��m + 2��� − 1�
�m+1

Rm+2 + �m�1 − �� − 2�1 + ���
�m−1

Rm 	cos�m�� − ���, R � �

M�
E�s,x� =

2�1 + ��
�

+ �� + 3�
R

�2cos�� − ��

− �
m=2

	 ��m�� − 1� − 2�� + 1��
Rm

�m+1 + �m − 2��1 − ��
Rm−2

�m−1	cos�m�� − ���, � � R

V��s,x� =�
V�

I �s,x� = � 2

R2 �3 − �� − 3�1 − ��
�2

R4	cos�� − ��

− �
m=2

	 �m�m + 2��1 − ��
�m+1

Rm+3 − m�4 + m�1 − ���
�m−1

Rm+1	cos�m�� − ���, R � �

V�
E�s,x� = �3 + ��

1

�2cos�� − ��

− �
m=2

	 �m�m�1 − �� − 4�
Rm−1

�m+1 − m�m − 2��1 − ��
Rm−3

�m−1	cos�m�� − ���, � � R

where U�, ��, M�, V� are equal to �U�s ,x� /�nx, ���s ,x� /�nx, �M�s ,x� /�nx, and �V�s ,x� /�nx, respectively.
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Tangential derivative with respect to the field point

U,t�s,x� =�U,t
I �s,x� = − �R�1 + 2 ln R� +

1

2

�2

R
	sin�� − �� − �

m=2

	 � 1

m + 1

�m+1

Rm −
1

m − 1

�m−1

Rm−2	sin�m�� − ���, R � �

U,t
E�s,x� = − �R�1 + 2 ln �� +

1

2

R3

�2	sin�� − �� − �
m=2

	 � 1

m + 1

Rm+2

�m+1 −
1

m − 1
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+ �
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+ �
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�m−1	sin�m�� − ���, � � R

V,t�s,x� =�V,t
I �s,x� = �2�3 − ��

R2 −
�2

R4 �1 − ��	sin�� − �� − �
m=2

	 �m2�1 − ��
�m+1

Rm+3 − m�4 + m�1 − ���
�m−1

Rm+1	sin�m�� − ���, R � �

V,t
E�s,x� = �− 3 − ��

1

�2sin�� − �� + �
m=2

	 �m�m�1 − �� − 4�
Rm−1

�m+1 − m2�1 − ��
Rm−3

�m−1	sin�m�� − ���, � � R

Appendix B: Analytical Evaluation of the Integral and its Limit for U„s ,x… Kernel
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This note can be regarded as a supplement of a paper entitled
“On the Use of Approximation Methods for Microcrack Shilding
Problems” (H. Cai and K. T. Faber, 1992, ASME J. Appl. Mech.
59, 497–501). In this note, an effective approximation method for
microcrack shielding problems is introduced briefly and is further
used to study the examples given in the Cai and Faber paper for
the interaction of a macrocrack with microcracks. It is found that
the applicability range of the present approximation method in
which the errors are acceptably small is much larger than that of
the approximation methods listed in the Cai and Faber
paper. �DOI: 10.1115/1.2127957�

1 Introduction
It is well known that microcrack toughening has been the sub-

ject of numerous modeling studies. The two basic approaches are
continuum modeling �1–3� and discrete modeling �4–9�. This note
concerns with discrete modeling methods. Discrete methods re-
quire consideration of the interaction of a macrocrack with micro-
cracks. For many microcracks necessary to treat the toughening
problem, it is essential to use approximation methods to keep the
amount of computation to a tractable level. Under certain condi-
tions, the results of these approximation methods are close to the
exact solution. However, when the macrocrack-microcrack and
microcrack-microcrack distances are small, the results of the ap-
proximation methods can be significally different from the exact
solution. Indiscriminate use of these results could inevitably lead
to incorrect conclusions. In Cai and Faber paper �10�, three ap-
proximation methods were briefly described and estimated by
means of the numerical solution �based on the exact formulation�.
They are Kachanov and Montagut, iterative-average traction, and
iterative-point representation. In this note, the displacement dis-
continuity method with crack-tip elements proposed recently by
the author is used to study the examples given in Cai and Faber
paper for the interaction of a macrocrack with microcracks. It is
found that the applicability range of the present approximation

method in which the errors are acceptably small is much larger
than the approximation methods listed in Cai and Faber paper.

2 Brief Description of the Present Approximation
Method

In the present approximation method, by extending Bueckner’s
principle �11� suited for a single crack to a general system con-
taining multiple interacting cracks, the original problem �the mul-
tiple interacting crack problem� is divided into a homogeneous
problem �the one without cracks� subjected to remote loads and a
multiple-crack problem in an unloaded body with applied trac-
tions on the crack surfaces. Thus the results in terms of stress
intensity factors �SIFs� can be obtained by considering the latter
problem, which is analyzed easily by means of the displacement
discontinuity method with crack-tip element �a boundary element
method� proposed recently by the author �12�.

The boundary element method consists of the constant displace-
ment discontinuity element presented by Crouch and Starfied �13�
and the crack-tip displacement discontinuity elements due to the
author �12�. In the boundary element implementation the left or
the right crack-tip element is placed locally at the corresponding
left or right each crack tip on top of the ordinary nonsingular
displacement discontinuity elements that cover the entire crack
surface and the other boundaries. The author �12� used the bound-
ary element method to analyze the SIFs of branched cracks. It was
found that the numerical approach is very efficient and accurate
for analyzing the branched crack problems.

3 A Brief Evaluation of Approximation Methods
The numerical solution �based upon the exact formulation� ob-

tained by the iterative method for a collinear microcrack of length
2c ahead of a macrocrack with an associated applied stress inten-
sity of KI

� �see Fig. 1�a�� was verified by Cai and Faber �10� by
comparing it with the analytical solution presented by Rubinstein
�7� and Rose �8�; see Table 1. Here, the cracked configuration with
the finite macrocrack of half-length a=20c, as shown in Fig. 1�b�,
is used to model the interaction of a half-infinite macrocrack with
a collinear microcrack shown in Fig. 1�a�. As done by Cai and
Faber �10�, cases of L / �2c� from 0.05 to 0.5 in steps of 0.05 were
considered. Regarding discretization, 30 and 600 elements with an
equal size, 2c /30, are discretized on the microcrack and the mac-

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received April 19, 2005; final manuscript
received September 28, 2005. Review conducted by Z. Suo. Fig. 1 Macrocrack interaction with a collinear microcrack
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rocrack, respectively. The numerical results of SIFs at the macro-
crack tip A are also listed in Table 1. It can be seen that the present
approximation method has very good accuracy for the interaction
of a half-infinite macrocrack with a collinear microcrack shown in
Fig. 1�a�.

The approximation methods: iterative method with average
traction �iterative-average�, the iterative method with point repre-
sentation of microcracks �iterative-point� and the approximation
method by Kachanov and Montagut �6� were compared with the
numerical solution for the two configurations shown in Fig. 1�a�
�half infinite macrocrack interaction with a collinear microcrack�
and in Fig. 2�a� �half infinite macrocrack interaction with a paral-
lel microcrack, which centered just above the macrocrack tip�.
The main emphasis is placed upon the mode I stress intensity, as
the mode I shielding is of particular interest. Comparison of the
results given by Cai and Faber �10� are shown in Figs. 3 and 4 for
the collinear microcrack and the horizontal microcrack cases, re-
spectively. By using the conventional definition of the relative
error for the normalized change in the stress intensity �kI

−KI
�� /KI

� and the errors of ten percent or less reasonable for ap-

Table 1 Comparison of „KI−KI
�
… /KI

� for the macrocrack interaction with a collinear microcrack

L /2c

�KI−KI
�� /KI

�

Cai and Faber �10� Present paper

Numerical Analytical Error �%� Present Error �%�

0.05 0.6497 0.6539 0.65 0.6092 −6.8
0.10 0.3859 0.3873 0.40 0.3691 −4.7
0.15 0.2729 0.2737 0.31 0.2640 −3.5
0.20 0.2087 0.2092 0.26 0.2033 −2.8
0.25 0.1671 0.1675 0.23 0.1636 −2.3
0.30 0.1379 0.1382 0.21 0.1355 −2.0
0.35 0.1164 0.1166 0.20 0.1147 −1.6
0.40 0.0999 0.1001 0.19 0.0987 −1.4
0.45 0.0870 0.0871 0.17 0.0860 −1.3
0.50 0.0765 0.0766 0.17 0.0758 −1.0

Table 2 „KI−KI
�
… /KI

� for the macrocrack interaction with a parallel microcrack

H /2c

0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
−0.889 −0.743 −0.619 −0.518 −0.439 −0.376 −0.283 −0.219 −0.173 −0.140 −0.115 −0.096 −0.081

Fig. 2 Macrocrack interaction with a parallel microcrack

Fig. 3 Comparison of the change in the mode I stress intensity
for the collinear microcrack Fig. 4 Comparison of the change in the mode I stress intensity

for the horizontal microcrack
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plicability of the approximation methods, Cai and Faber �10� de-
termined the ranges with which the approximation methods are
applicable; see Table 3.

For the interaction of a half-infinite macrocrack with a parallel
microcrack shown in Fig. 2�a�, the configuration shown in Fig.
2�b� is used. Cases of H / �2c� from 0.05 to 1.0 were considered.
The present approximation results are given in Table 2. In order to
compare the present approximation results with those obtained by
Cai and Faber �10�, the present approximation results are also
pictured in Figs. 3 and 4 for the collinear microcrack and the
horizontal microcrack, respectively. By comparing the present ap-
proximation results with the numerical solutions, which are based
on the exact formulation, the applicability range of the present
approximation method can be determined; see Table 3. It is found
that the applicability range of the present approximation method is
much larger than that of the approximation methods mentioned
above.

4 Concluding Remarks
This note presents an effective approximation method for mi-

crocrack shielding problems. The examples given in the Cai and
Faber paper were analyzed to illustrate that the applicability range
of the present approximation method in which the errors are ac-
ceptably small is much larger than that of the approximation
methods listed in the Cai and Faber paper.

By the way, it is pointed out that the macrocrack interaction
with a parallel microcrack shown in Fig. 2 is a mixed-mode crack
problem, which is analyzed easily by using the present approxi-
mate method �e.g., see Yan �12� for a branch crack problem�.
Because this note concentrated specifically on the approximate
method for analyzing microcrack shielding problems, as done by
Cai and Faber �12�; here, the mode II SIFs at the macrocrack tip
due to the microcrack were not considered.
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Table 3 Range of applicability for approximation methods

Approximation method Collinear microcrack Horizontal microcrack

Cai and Faber Iterative-average L /2c�0.1 H /2c�0.3
Iterative-point L /2c�0.3 H /2c�0.9

Kachanov-Montagut L /2c�0.2 H /2c�1.0
Present paper Present L /2c�0.04 H /2c�0.05
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Ice or Snow in the Tempel 1 Comet?
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An estimation of the Tempel 1 comet strength is deduced as inter-
mediate between that of snow and ice. �DOI: 10.1115/1.2127958�

On July 4, 2005 NASA celebrated the success of the mission
Deep Impact, culminated with the impact of a ballistic projectile
on the Tempel 1 comet. The projectile, with a mass of m
�370 Kg, hit the target at a �relative� velocity of v
�37 000 Km/h creating a crater of r�100 m in radius and h
�40 m in height.

Material scientists would be happy to measure the mechanical
strength �C of the comet material, as well as the other solid heav-
enly bodies. The extraction of specimens for such a purpose has

not been realized until now. In spite of this, an estimation of the
comet strength can be easily deduced by the following procedure.
The kinetic energy K available in the collision is proportional to a
power of the crater volume V with a fractional exponent �1�. For
example, according to the Gault’s scaling �2�, assuming geometri-
cal self-similarity �i.e., h�r� we deduce 1.19 from the lunar crater
data. In particular, for large-sized fragmentations the exponent is
close to the unity and the constant of proportionality to the me-
chanical strength of the comminuted material �3�. Thus, from the
previous reported experimental observations we can estimate the
mechanical strength of the Tempel 1 comet, to be around

�C �
K

V
=

1/2mv2

�h/2�r2 + h2/3�
� 30 kPa �1�

This value is in between that of terrestrial snows
��1–10 kPa� and ice ��1000 kPa�.

To have an idea of such strengths, note that the last value cor-
responds to the fracture of an ice cubelet just under the weight of
a middle-sized man, as can be easily verified in our own home.
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Statistical characteristics of failure location and their relation to
strength in brittle materials are studied. One-dimensional rod and
bending of a beam under arbitrary distributed loads are studied
as examples. The analysis is based on the weakest link approach,
and is not confined to specific strength distributions (such as
Weibull, Gaussian, etc.). It is found that the statistical moments of
the failure location (average, variance, etc.) are directly related to
the area moments (centroid, inertia, etc.) of a simple function of
the stress field. Therefore, important information related to mate-
rial strength can be experimentally obtained based on measuring
failure locations. Such experiments do not require the measure-
ment of stresses, strains, or displacements, and are very attractive
for MEMS/NEMS applications. The approach is general and can
be applied to other types of testing specimens.
�DOI: 10.1115/1.2150501�

Introduction and Motivation
The probabilistic nature of strength in brittle materials has been

studied extensively �1�. Large dispersion, coupled with size ef-
fects were observed in ceramics, concrete, rocks, and other mate-
rials. In most cases the strength probability was found to follow
the Weibull distribution, and size effects were attributed to the
weakest link concept �2�. Similar characteristics have been also
observed in micro/nano-structures �3–7�, focusing on silicon/
polysilicon, which are the prime materials used in MEMS. This
probabilistic nature dramatically affects the device reliability and
must not be ignored �8–10�. To obtain the statistical properties of
the strength, a large number of experiments must be performed,
involving the measurement of strains and stresses. This task be-
comes extremely complex on the micro-nano-scale.

It is shown in this paper that the statistical properties of the
failure location can be used to obtain important information re-
garding the strength distribution. The procedure proposed is based
on relatively simple tests which only involve measurements of the
failure location. A similar approach, yet based on a different con-
cept, has been applied in Ref. �11�. It should be noted that due to
the inherent probabilistic nature of strength, the failure location
does not necessarily take place at the location of the highest stress
level.

Basic Relations of Random Strength
The analysis of random strength �failure probability� based on

the weakest link approach and the Weibull distribution is well
established �e.g., Ref. �2��. In this section the emphasis is on less-
common relations that include important approximations for cases
of low failure probabilities, which leads to a general approach that

is not confined to the Weibull distribution. These relations are
essential for the analytical derivations in the next section.

Consider a rod of length L under a stress field ��x�. Strength is
controlled by surface defects, microstructure heterogeneity, etc.
Fracture mechanics tools are impractical, since defect geometries
and stress concentration fields are too complex to be measured.
Therefore, failure probability measures are taken. We rely on
some reference �experimental� data, which correspond to the fail-
ure probability of an element of a standard, arbitrarily chosen,
length �, subjected to a uniform stress �̄, i.e.

F��̄,�� =�
0

�̄

f���,��d�� = 1 − G��̄,�� �1�

F and G are failure and survival probabilities, respectively, and f
is the failure probability density.

In order to calculate the failure probability of the rod, a failure
criterion must be applied. A common approach for brittle materi-
als is based on the weakest link principle, in which any part of the
structure leads to the failure of the whole structure. Hence, divid-
ing the rod into N equal elements of length �=L /N and consider-
ing a “weakest link” failure criterion

G���x�,L� = �
i=1

N

G��̄i,�� �2�

Here G is a functional of ��x�. � is small enough �N large�, such
that a uniform stress ��̄i� inside each basic element �i� is assumed.
For any G, define �12�

g��̄,�� = − ln G��̄,�� → F��̄,�� = 1 − exp�− g��̄,��� �3�

where g is a nonnegative, nondecreasing function of �. From Eq.
�3�, rewrite Eq. �2� as

g���x�,L� = �
i=1

N

g��̄i,�� . �4�

In a continuous form

g���x�,L� =
1

�
�

0

L

g���x�,�� �5a�

g���x�,L�x =
L

�
�

0

1

g���x�,��dx �5b�

x in Eq. �5b� is normalized by L. The above is a form of the very
well known dependency of the survival probability of a structure
on the stress field, used frequently for ceramics �2� and MEMS
applications �3,4�. For the particular case of a uniform stress, Eq.
�5� reduces to

g��̄,L� =
L

�
g��̄,�� �6�

demonstrating the size-effect in brittle materials.
Equation �5� indicates that when L→0, g→0 and G→1, i.e., a

vanishingly small element never fails. This limit possesses no
practical difficulty, since measurable elements always have a finite
size and strength. Thus, in a structure consisting of a large number
of elements, the failure probability of a single element is much
smaller compared to the failure probability of the entire structure.
This observation is of great importance in obtaining analytical
results, as shown in the sequel.

Consider the case of a 1D structure of length L, made from a
very large number of elements, under a uniform stress field. Since
��L, the failure probability of each element, associated with the
failure stress of the structure, is very small. In this case we have
�1�
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F��̄,�� � g��̄,�� �7�

Moreover, g can be approximated as a power function �8,13�

g��̄,�� = 	 �̄

��

�

. �8�

Inserting Eq. �8� in Eq. �3�, we obtain the Weibull distribution
function

FW��̄,�� = 1 − exp	− 	 �̄

��

�
 �9�

For the Weibull distribution, �� is approximately the average
strength of the element, and � is associated with the dispersion
�higher � indicates lower dispersion�. It is evident that Weibull
distribution is a good approximation for a large class of probabi-
listic strength, provided that the stresses are low enough compared
to some reference value �average strength for example�. Combin-
ing Eqs. �7� and �8� we have simply

1 � F��,�� � 	 �

��

�

�10�

Note that Eq. �10� is not confined to the Weibull distribution.
Nevertheless, since the Weibull probability function is commonly
used for brittle materials and MEMS applications, interpretation
of the results will be with reference to the Weibull distribution.
Note that the Weibull distribution has no local maximum point
�most probable value� for values of ��1. Therefore, practical
values of � are expected to be greater than 1, a conclusion which
will be used in the following. Indeed, values of 3���25 are
found for most brittle materials �2–6�. Values of ��1 are usually
associated with “infant mortality” type of failures �14� related to
problems such as assembly, production, etc., and not to strength.

Failure Location in a Tensile Test
The failure location of a homogeneous specimen loaded slowly

up to failure is at the point of maximum stress. However, in ma-
terials with random strength, an element with a lower stress may
fail first. Therefore, failure is only more probable at locations of
higher stresses. Thus, failure location is a random parameter,
which is a functional of the whole stress field.

Consider a structure of N elements, each of size � under unidi-
rectional �not necessarily uniform� stress field, loaded slowly up
to failure. The probability of failure at a specific element k is equal
to the probability of failure of the kth, divided by the probability
of failure at any element, i.e.

pk =

Fk · 	� j=1

N
�1 − Fj�

1 − Fk



�m=1

N �Fm · 	� j=1

N
�1 − Fj�

1 − Fm


�
=

�� j=1

N
�1 − Fj�� ·

Fk

1 − Fk

�m=1

N ��� j=1

N
�1 − Fj�� ·

Fm

1 − Fm
�

=
�k

�m=1

N
�m

�11�

where

� j =
Fj

1 − Fj
�12�

and Fj is the failure probability of the jth element. Hence, the
cumulative probability for the failure location, or the probability
that the structure will fail at a location lower �or equal� than the
kth element is simply

Pk =
�m=1

k
�m

�m=1

N
�m

. �13�

In a continuous form

Fx =

�
0

x

��x1�dx1

�
0

1

��x1�dx1

�14�

Differentiation yields

fx =
d

dx
Fx =

��x�

�
0

1

��x1�dx1

�15�

Fx and fx are the probability and probability density functions,
respectively, for the failure location, and ��x1� is associated with
Eq. �12� for an element located at x1. For the particular case of a
uniform stress distribution, ��x1� is constant �independent of x1�,
i.e.

fx�uniform� = 1 �16�

as expected. The average failure location in this case is at the
middle point

x�uniform�� =�
0

1

x · fxdx =
1

2
. �17�

Now consider the particular case where ��L. Since the failure
probability is positive and smaller than 1, we write

��x� =
F���x�,��

1 − F���x�,��
= F���x�,�� + �F���x�,���2 + �F���x�,���3

+ ¯ �18�

As discussed above, when l�L the failure stress level corre-
sponds to a very low failure probability of each element �see the
demonstration in Ref. �8��. Thus, using Eq. �10� we approximate
Eq. �18� by considering its first term only

��x� � 	��x�
��


�

�19�

The probability density function of the failure location �15� re-
duces to

fx =
��x��

�
0

1

��x1��dx1

�20�

From Eq. �21� it is seen that fx is invariant to the properties of the
basic element ��l , l�, and depends solely on the stress field and on
�. Since � is related to the strength dispersion of both the basic
element and the entire structure �see Eq. �6��, � can be obtained
by measuring statistical properties of the failure location �such as
average and variance�.

Using Eq. �21�, the average failure location is

x� =�
0

1

x · fxdx =

�
0

1

x · ��x��dx

�
0

1

��x1��dx1

�21�

Denoting � as
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��x� = ���x��� �22�

we see that the average failure location is at the centroid of �.
Furthermore, all higher statistical moments of failure location are
associated with the corresponding moments of ��x�, i.e.

x�n� =�
0

1

x�n · fxdx =

�
0

1

x�n · ��x�dx

�
0

1

��x�dx

=�
0

1

x�n · �̃�x�dx

�̃�x� =
��x�

�
0

1

��x�dx

�23�

x� is the deviation from the average failure location x�. For the
extreme case of �→1 �large dispersion in strength�, the average
failure location is found at the centroid of the stress field itself and
for �→	 �nonrandom strength�, the average failure location is
just at the location where the highest stress level exists whereas
the variance �n=2� vanishes, as expected. Thus, � is obtained
based on the failure location.

Since finding � this way requires only simple instrumentation
and inexpensive technology �no need to measure stresses, dis-
placements, or strains� it introduces a new alternative for obtain-
ing important mechanical characteristics of the structure. This fea-
ture is extremely important in MEMS/NEMS applications, where
measurements of stresses and strains are complex. Moreover, the
suggested method can be used in MEMS mass-productions for
detecting process anomalies by unexpected changes in �.

Failure Location in a Bending Test
In the previous section, the statistical characteristics of the fail-

ure location were obtained for a 1D rod under a tensile stress field.
In practice, especially with micro-nano-specimens, it is easier to
perform a bending test. The failure location analysis of a beam
under bending differs from the unidirectional tensile case since the
stress distribution through the thickness of the beam is nonuni-
form. Moreover, part of the cross section is under tensile stress,
while the other is under compression.

Another important issue related to the analysis of beams is
whether failure occurs at the surface of the beam or in its interior.
To demonstrate the difference, consider the size effect on the
strength of a beam: if failure occurs in the interior of the beam, the
size effect on strength �as well as the failure probability� is related
to the volume of the beam. However, if failure begins at the sur-
face of the beam the size effect of strength corresponds to the area
of the beam surface. Both types of failure modes can be found in
brittle materials �2–7�; yet, the latter, which is usually associated
with surface defects and stress concentrations due to surface
roughness, is more common. Interestingly, assuming an Euler-
Bernoulli behavior, it can be shown �details are not given here�
that in the case of a symmetric cross section, the failure location
analysis of a beam under a bending moment field leads to identi-
cal expressions for both failure modes �failure at the surface of the
beam or in its interior�. The reason lays in the normalized expres-
sion �e.g., Eqs. �11� and �14�� associated with the probability that
failure will occur at a certain cross-section along the length of the
beam.

For brittle materials, the compressive strength is much higher
than the tensile strength. Therefore, the probability of failure due

to compressive stress is usually neglected �2,4,8�. As a result, the
statistical moments of the failure location obtained in Eqs. �23�
and �21� are valid also for bending, except that the definition of �
in Eq. �22� should be replaced by

��x� = �M�x��� �24�

where M�x� is the bending moment field. In many common tests,
such as bending of a cantilever with a point-force, or a three-point
bending specimen, M does not change its sign, so the absolute
value in Eq. �24� is not necessary. Also, it should be noted that for
the three point bending test �as for any test involving a symmetric
stress-field�, the average failure location is expected to be at the
midspan, regardless of the strength dispersion. Therefore, finding
� in this case requires higher statistical moments �variance, etc.�
of the failure location.

For demonstration, consider an ensemble of cantilever beams
loaded up to failure by a point force at its free end. We have

M�x� = M0 · x �25�

where M0 is proportional to the magnitude of the force. From Eqs.
�21� and �23� the average and variance of the failure location are,
respectively

x� =
� + 1

� + 2
x�2� =

� + 1

�� + 3��� + 2�2 �26�

As expected, for very high values of �, the average failure loca-
tion approaches 1, corresponding to the location of the highest
bending moment, and the variance vanishes. For very large
strength dispersions ��→1� the average failure location is found
at the centroid of the bending moment field �x=2/3�, and the
coefficient of variation �COV, the standard deviation normalized
by the average� approaches 35%.

Conclusions

• A simple relation between the failure location statistics and
the statistical properties of the failure were obtained for ten-
sile and bending tests. The approach is valid for other test-
ing methods.

• Measuring failure location is simple, inexpensive, and does
not require measurements of stresses, displacements, or
strains. It is especially important to micro-nano-
applications, and can be used to detect process anomalies
during manufacturing.
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Continuum Damage Mechanics and
the Life-Fraction Rule

U. Stigh
Division of Mechanical Engineering,
University of Skövde,
P. O. Box 408, SE-541 28, Skövde, Sweden

This paper gives a short review of two different methods for life
prediction at high temperature; namely continuum damage me-
chanics (CDM) and the linear life-fraction rule (LFR). It is well
known that the class of CDM theories with a separable evolution
law gives a life prediction in accordance with the LFR. However,
it appears to be an open question if this is a necessary condition.
It is here shown that in order for a CDM theory to comply with the
LFR it must have a separable evolution law. That is, if we can
assume that a material follows the LFR, it is necessary to chose a
separable evolution law for this material. The reverse is also true,
to get a life-fraction different from unity, we must chose a non-
separable evolution law. �DOI: 10.1115/1.2150502�

1 Introduction
At temperatures above about one-third of their homologous

temperature, Tm, engineering materials tend to rupture when ex-
posed to a constant stress, cf. e.g., Ref. �1�. This is known as creep
rupture and has long been a subject of intense research due to its
engineering importance. At relatively low temperatures and high
stress, rupture is preceded by large strains while at high tempera-
ture and low stress, very small strain may precede rupture.

Experiments performed at constant temperature and stress often
show an exponential relation between the time to rupture, tR, and
the applied uniaxial stress �. Thus

tR��� = A�a �1�

where A and a are material constants that can be determined ex-
perimentally. In the sequel, the symbol tR��� is reserved for the
time to creep rupture under constant stress. This function may be
determined experimentally or theoretically.

In this paper, two alternative methods to predict life under vary-
ing stress are treated; the linear life-fraction rule �LFR� and the
method of continuum damage mechanics �CDM�. Specifically, we
will derive the necessary and sufficient conditions for a CDM
theory to yield the same predictions as the LFR. Our interest in
this problem stems from recent results by Alfredsson and Stigh
�2�, who show that it is possible to develop thermodynamically
consistent CDM theories which yield a linear life-fraction differ-
ent from unity. In this introductory section, the two sets of
methods/theories are first presented. In the following section,
some known results on the sufficient conditions under which a
CDM theory conform with the LFR are presented. In the second
section, a simplified loading sequence is first presented and the
necessary condition under which a CDM theory yields the same
predictions as the LFR is derived. This result is shown to be valid
under general loading. The paper is ended with a discussion on the
implications of this result to other situations.

1.1 Robinson’s Life-Fraction Rule. In the industry, the most
used method for life prediction is Robinson’s linear life-fraction
rule �3�. According to this method, “the expenditure of each par-
ticular fraction of the life span at elevated temperature is indepen-

dent of and without influence upon the expenditure of all other
fractions of the life to rupture.” With stepwise constant stress
levels, �i, the life-fraction is defined by

Lf � �
i=1

n
ti

tR��i�
�2�

where ti is the time spent under stress �i. At rupture, Lf =1, which
is the rupture criteria. With a continuously varying stress, ��t�, the
life-fraction is generalized to

Lf�t� � �
0

t
dt

tR���t��
�3�

The time to rupture, t*, is solved from the rupture criteria
Lf�t*�=1. Note that the symbol t* is reserved for the time to rup-
ture under general loading ��t� while the symbol tR indicates the
time to rupture under constant stress. Thus, tR��0�= t*����0�,
where �0 is constant. It is immediately recognized that Lf�tR�=1 if
�=const. an important question is obviously how good these re-
lations conform with experiments. Due to large scatter in experi-
mental results, this appears to be an open question which might
lack a materially independent answer. An attempt to study the
problem is reported by Jansson �4�. In the study, experiments are
performed on an austenitic stainless steel �AISI 316� at 700°C.
Both experiments with a constant stress, yielding the relation
tR���, and step-loading are performed. In these, the stress is held
constant during one time period and then changed to another con-
stant level which is kept until rupture, cf. Fig. 1. Two types of
experiments are conducted, “step-up” where the second stress
level is higher than the first and “step-down” where it is lower.
The life-fraction varies according to Fig. 1. Thus, step-up appears
to give a somewhat lower life-fraction at rupture than step-down.
The difference is perhaps too small to be of any engineering sig-
nificance. This is indeed the basic assumption in much engineer-
ing work.

It should be emphasized that the LFR do not couple the gradual
degradation of the material with other constitutive properties. This
can lead to large errors when analyzing a hyperstatic structure. If,
for instance, the applied load on a hyperstatic structure is kept
constant, the degradation leads to a redistribution of the stress
with time. Generally, the larger stresses decrease and the lower
increase. This means that an ignorant application of a design rule
according to Eq. �2� gives an overly conservative estimate of the
failure time.

1.2 Continuum Damage Mechanics. A method to consider
the degradation of constitutive properties, integrated with a theory
for life prediction, is provided by the method of continuum dam-
age mechanics �CDM�. The original ideas of Kachanov �5� is
inspired by the observation that, at temperatures above about
Tm/2, grain boundary cavities form with time. The cavities nucle-
ate, grow, and eventually coalesce to form a major crack which
leads to final creep rupture. In order to consider the influence of
the grain boundary cavities, a “net stress,” �̃, and a damage vari-
able, �, are introduced; for a virgin material, �=0 and for rupture
�=1. The net stress, which might be visualized as the load on the
remaining “load bearing cross section” of the material, is related
to the stress by

�̃ =
�

1 − �
. �4�

Thus, for a virgin material without cavities, the net stress equals
the acting stress. At rupture no load bearing area remains and the
net stress tends to infinity when �→1. Kachanov assumes the
damage growth law
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�̇ = C� �

1 − �
	�

�5�

where C and � are material constants. With a known ��t�, Eq. �5�
provides a separable differential equation for ��t�. With the initial
condition ��0�=0 and the rupture criteria ��t*�=1, integration
yields

C�1 + ���
0

t*

��t��dt = 1 �6�

This equation provides an implicit expression for the time to
rupture t* under varying stress. If the stress is constant, the re-
maining integral is readily evaluated and the time to rupture is
given by

tR =
1

C�� + 1��� �7�

Thus, the theory predicts an exponential relation between tR and
�, which is indeed often observed, cf. Eq. �1�. From this equation,
the material constants C and � can be determined from experi-
ments performed with constant stress.

1.3 Conditions Under Which CDM Implies the LFR. If we
assume that a material follows Kachanov’s equation, Eq. �5�, it
also follows the LFR. To show this, form the life-fraction at rup-
ture, Eq. �3�, using the time to rupture under constant stress from
Kachanov’s theory, cf. Eq. �7�. The result is

Lf = C�� + 1��
0

t*

��t��dt = 1 �8�

where Eq. �6� is used in the last equality. Thus, Kachanov’s ver-
sion of CDM implies the LFR. This result was shown in Refs.
�6,7�. It is also known that any separable evolution law implies the
LFR. That is, if

�̇ = g���h��� �9�

then Lf�t*�=1. This is shown by integrating the separable differ-
ential equation between ��0�=�1 and ��t*�=�2, where we have
introduced generalized initial and rupture conditions ��0�=�1 and
��t*�=�2, respectively. The result is

�
0

t*

g���t��dt =�
�1

�2 d�

h���
� � , �10�

where the symbol � is introduced for the integral on the right-
hand side. Note that with a specific CDM model, � is a constant.
Now, if � is a constant, the left-hand side is readily integrated and
the time to rupture is given by

tR��� =
�

g���
�11�

With a varying stress, the life-fraction at rupture is given by Eq.
�3� using Eq. �11�, viz.

Lf�t*� =�
0

t* g���t��
�

dt = 1 �12�

where Eq. �10� is used in the last equality.
Thus, any CDM theory with a separable evolution law yields a

life-fraction equal to unity at rupture. However, in a hyperstatic
structure, any CDM theory will generally predict another lifetime
than the LFR since the LFR does not provide a modeling of the
load redistribution due to the degradation of the material. This
phenomenon is usually modeled with a CDM theory.

2 Necessary Conditions
In the introduction we showed that any evolution law

�̇ = f��,�� �13�

that is separable according to Eq. �9� yields Lf�t*�=1 at rupture.
We will now show that this is a necessary condition for a CDM
theory to conform with the LFR. To show this, first study a sim-
plified two-step load history, cf. Fig. 2. For this load history, we
will show that Eq. �13� yields Lf�t*�=1 at rupture only if the
function f is separable according to Eq. �9�. Thus, if a CDM
theory shall conform with the LFR for any load history, the only
possibility is for f to be separable according to Eq. �9�.

For greater generality, chose ��0�=�1 as the initial value of
damage and ��t*�=�2 as the rupture criteria. During the time
period 0� t�T, �=�1 and the evolution law, Eq. �13�, is sepa-
rable. Integration yields

�
�1

�T d�̂

f��1,�̂�
= T �14�

where �T is the damage at t=T. This equation is now conve-
niently rewritten according to

T =�
�1

�T

. . . =�
�1

�2

. . . −�
�T

�2

. . . = tR��1� −�
�T

�2 d�̂

f��1,�̂�

�15�

Similarly, in the remaining life, i.e., in the time interval T� t
� t*, �=�2 and Eq. �13� is again a separable differential equation.
Integration yields

�
�T

�2 d�̂

f��2,�̂�
= t* − T �16�

We can now form the life-fraction at rupture, cf. Eq. �2�

Fig. 1 Left panel: Step-up and step-down experiments. Right
panel: Life-fraction at rupture during step-up and step-down
experiments performed with an austenitic stainless steel at
700°C. The ordinate shows the life-fraction at rupture and the
abscissa shows the number n of experiments yielding a life-
fraction less than the value on the ordinate. Experimental re-
sults from Ref. †4‡.

Fig. 2 Two-step load history. During the time 0< t<T, �=�1.
From t=T, �=�2 which is held constant until rupture at t= t*.
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Lf�t*� =
T

tR��1�
+

t* − T

tR��2�
=

tR��1� −�
�T

�2 d�̂

f��1,�̂�

tR��1�
+

�
�T

�2 d�̂

f��2,�̂�

tR��2�
�17�

where Eqs. �15� and �16� are used in the last equality. Finally, we
evaluate the rupture times for the load levels �1 and �2 using Eqs.
�14� and �16�. In Eq. �14� we replace �T with �2 and T with
tR��1� and in Eq. �16� we replace �T with �1 and t*−T with
tR��2�. Inserting in Eq. �17� and simplifying the result yields

Lf�t*� = 1 −
F��T,�1�
F��1,�1�

+
F��T,�2�
F��1,�2�

�18�

where we have defined

F��,�� � �
�

�2 d�̂

f��,�̂�
�19�

Thus, a necessary condition for Lf�t*�=1 is that the relation

F��,��
F��1,��

� C �20�

is independent of the parameter �. As evident from the equation
above, the function C is, at most, a function of � and �. If C is
independent of � we can rewrite Eq. �20� as

F��,�� = C���F��1,�� �21�
Thus

C���F��1,�� =�
�

�2 d�̂

f��,�̂�
, �22�

where we have used Eq. �19� in the last equality. Differentiation
with respect to � yields

C����F��1,�� = −
1

f��,��
�23�

Thus

f��,�� = g���h��� �24�
is a necessary condition for a CDM theory to predict the same life
as the LFR for a step-loading. Since a separable evolution law
always implies the LFR, we have shown that this is the only
possibility for general loading.

3 Discussion
CDM provides methods to develop constitutive equations

within the concept of continuum mechanics to deal with the
gradual degradation of materials during loading. In recent years,
the implications of the second law of thermodynamics on CDM
theories have been scrutinized to give guidance on the structure of
a CDM theory. A recent example is given in Ref. �2� that gives a
framework for a class of CDM theories. The basic idea is that, if
the damage variable is constant, the material responds as the un-
damaged material with modified stress-like variables. The modi-
fications are, in principle, given by the structure �̃=� /N���. By
identifying the “damage stress,” �, as the work-conjugated quan-
tity to �, the requirements of the evolution law for damage to
conform with the dissipation inequality are identified. It is shown
that this stress is partitioned in two parts; one is the elastoplastic
damage stress, �ep, which essentially measures the release of elas-
tic and plastic free energy during growth of damage. The second
part is identified as a “cohesive damage stress,” �c, which mea-
sures the increase of cohesive energy during growth of damage.
This second term facilitates a possibility to model healing of dam-

age without violating the second law of thermodynamics. In Ref.
�2�, the theory is exemplified with the following evolution law

�̇ =
�2

2E2�1 − ��2 −
Ec

E
� �25�

which is both thermodynamically consistent and nonseparable. In
the equation, E and Ec are material parameters. As expected for a
nonseparable evolution law, Lf�t*��1. Moreover, as intuitively
expected the life-fraction evolves quicker than the damage, i.e.,
Lf�t*��1. In order to develop a model yielding Lf�t*��1 one may
couple a time-independent damage growth to the time-dependent
part. This would result in an additional increase of damage for
each load cycle that yields a quicker damage growth than ex-
pected from the LFR.

The result of this paper is readily extended to fatigue if the
evolution law of fatigue damage can be written

d�

dN
= f� 	�

N���
	 �26�

Here 	� is the stress range and d� /dN the rate of damage growth
per unit load cycle N. The corresponding life-fraction rule is the
well-known Palmgren-Miner rule, cf. Refs. �8,9�

�
0

NP
ni

Nf�	�i�
= 1 �27�

Here, ni is the number of load cycles at the constant stress range
	�i, Nf�	�i� is the number of load cycles to fracture at the same
stress range, and NP is the number of load blocks to fracture. A
simple change of interpretation of the symbols leads to the same
conclusion as for creep rupture.

We conclude this paper by noting that the result is valid for
multiaxial stress states as well. For instance, introducing an effec-
tive stress according to

� = 
�eff + 3�1 − 
��m �28�

where �eff��3/2�sijsij, �m��kk /3, and sij ��ij −�ij�m are the
von Mises effective stress, the mean stress, and the deviatoric
stress, respectively. With 0�
�1, the damage evolution can be
modeled to vary from one being driven by the hydrostatic stress
�
=0� to one being driven by the deviatoric stress �
=1�. With
this effective stress, uniaxial tests can be used to determine the
evolution law f�� ,��. The value of 
 has to be determined from
multiaxial tests. With this effective stress, the results of this paper
are immediately applicable. With more elaborate evolution laws,
the ability to conform with the LFR has to be checked. If possible,
a suitable method would be to identify the effective stress associ-
ated with the specific model.
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Circumferential Waves of Infinite
Hollow Poroelastic Cylinders
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Employing Biot’s theory of wave propagation in liquid saturated
porous media, the frequency equation of circumferential waves for
a permeable and an impermeable surface of an infinite hollow
poroelastic cylinder is derived in the presence of dissipation and
then discussed. Phase velocity and attenuation are determined for
different dissipations and then discussed. By ignoring liquid ef-
fects, the results of purely elastic solid are obtained as a special
case. �DOI: 10.1115/1.2164513�

1 Introduction
Waves propagating around the circumference of a poroelastic

circular cylinder are known as circumferential waves. The free
vibrations of a solid cylinder of an elastic material are given by
Love �1�. Gazis �2� studied the free vibrations of an infinite thick-
walled hollow elastic cylinder. Employing Biot’s theory �3� of
wave propagation, Tajuddin �4� studied free vibrations of an infi-
nite isotropic poroelastic cylinder, taking the general displacement
components of a vibratory system following the analysis of Za-
manaek �5�. A review of the work based on Biot’s theory was
given by Paria �6�. A historical formulation of porous media theo-
ries is given by Boer and Ehlers �7�. Tajuddin �8–13� studied some
problems of wave phenomena characterizing Biot’s theory. Wisse
et al. �14� presented the experimental results of guided wave
modes in porous cylinders. Chao et al. �15� studied the shock-
induced borehole waves in porous formations.

In the present analysis, the frequency equation of circumferen-
tial waves of an infinite hollow poroelastic cylinder for a perme-
able and an impermeable surface is derived in the presence of
dissipation. Plots of nondimensional frequency versus ratio of
thickness to inner radius of the hollow cylinder are presented, for
two different types of poroelastic materials, namely, sandstone
saturated with kerosene and sandstone saturated with water. The
experimental values of physical parameters are presented by Fatt
�16� and Yew and Jogi �17�, respectively. These material param-
eters are employed to study the nondimensional frequency, phase
velocity, and attenuation The results are presented graphically and
then discussed. The considered problem is of importance in civil
engineering, ceramic industry where the frequency play an impor-
tant role. The investigation is also applicable to Bio-Mechanics,
wherein osseous tissue, bony elements saturated with fluid are
approximated by hollow poroelastic cylinder.

2 Solution of the Problem
Consider a thick-walled homogeneous, isotropic infinite po-

roelastic hollow cylinder of inner and outer radii r1 and r2, respec-
tively. Let �r ,� ,z� be the cylindrical polar coordinates such that
z-axis coincides with the axis of the cylinder. The solid displace-

ment functions u�u ,v ,0� which can readily be evaluated from
field equations of Biot �3� representing steady-state harmonic vi-
brations, are

u�r,�,t� = �C1�1Jn���1r� + C2�1Yn���1r� + C3�2Jn���2r� + C4�2Yn���2r�

− nr−1�A1Jn��3r� + B1Yn��3r���cos
sin �n��ei�t

v�r,�,t� = �nr−1�C1Jn��1r� + C2Yn��1r� + C3Jn��2r� + C4Yn��2r��

− �3�A1Jn���3r� + B1Yn���3r���sin
cos�n��ei�t, �1�

where � is the wave frequency, n is the integer number of waves
around the circumference and/or also known as angular wave
number �=kh�, where k is the complex wave number and
h �=�r2−r1���0, is the thickness of the hollow poroelastic cylin-
der. Also Jn and Yn are Bessel functions of first and second kind of
order n, respectively. A “prime” over a quantity denotes differen-
tiation with respect to r. In �1� C1, C2, C3, C4, A1, B1 are all
constants, and

�i = �vi
−1 . �i = 1,2,3� �2�

In Eq. �2�, v1, v2, v3 are the dilatational wave velocities of the first
and second kind and a shear wave velocity, which are all complex
following Gardner �18�.

By substituting the displacement functions u, v from �1� into
stress displacement relations �3�, the relevant solid stresses and
liquid pressure are

�rr + s = �C1M11�r� + C2M12�r� + C3M13�r� + C4M14�r�

+ A1M15�r� + B1M16�r��cos
sin �n��ei�t,

�r� = �C1M21�r� + C2M22�r� + C3M23�r� + C4M24�r� + A1M25�r�

+ B1M26�r��sin
cos�n��ei�t,

s = �C1M31�r� + C2M32�r� + C3M33�r� + C4M34�r��cos
sin �n��ei�t.

�s

�r
= �C1N31�r� + C2N32�r� + C3N33�r� + C4N34�r��cos

sin �n��ei�t.

�3�

The coefficients Mij�r� and Nij�r� are

M11�r� = − 2N�1r−1Jn���1r� + �2N�n2r−2 − �1
2� + �Q + R��1

2�1
2 − �A

+ Q��1
2�Jn��1r� ,

M15�r� = − 2Nn�3r−1Jn���3r� + 2Nnr−2Jn��3r� ,

M21�r� = − 2Nn�1r−1Jn���1r� − Nnr−2Jn��1r� ,

M25�r� = r−1�3Jn���3r� + ��3
2 − 2n2r−2�Jn��3r� ,

M31�r� = �R�1
2 − Q��1

2Jn��1r�, N31�r� = �R�1
2 − Q��1

3Jn���1r� ,

�4�

and M12�r�, M16�r�, M22�r�, M26�r� are similar to M11�r�, M15�r�,
M21�r�, M25�r� with Jn, Jn� replaced by Yn, Yn�, respectively,
M14�r�, M24�r� are similar to M11�r�, M21�r� with �1, �1, Jn, Jn�
replaced by �2, �2, Yn, Yn�, respectively, and M13�r�, M23�r�,
M33�r�, N33�r� are similar to M11�r�, M21�r�, M31�r�, N31�r� with
�1, �1 replaced by �2, �2, respectively. Also, M32�r� is similar to
M31�r� with Jn replaced by Yn, N32�r� is similar to N31�r� with Jn�
replaced by Yn�, M34�r� is similar to M31�r� with �1, �1, and Jn

replaced by �2, �2, and Yn, respectively, and N34�r� is similar to
N31�r� with �1, �1, Jn� replaced by �2, �2, Yn� respectively.

In Eqs. �4�

�i
2 = �RK12 − QK22�−1�RK11 − QK12 − vi

−2�PR − Q�2�, �i = 1,2� ,
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P = A + 2N, K11 = �11 − ib�−1, K12 = �12 + ib�−1,

K22 = �22 − ib�−1. �5�
The recursion relations of Bessel functions have been employed
using Abramowitz and Stegun �19�.

3 Frequency Equation
The boundary conditions for free vibrations of a permeable sur-

face are

�rr + s = 0, �r� = 0, s = 0 at r = r1 and r2. �6�
Equations �3� and �6� together give six homogeneous equations
for the six constants C1, C2, C3, C4, A1, and B1. By eliminating
these constants, the frequency equation for a permeable surface is

D = 0, �7�

where the determinant D is

D = �
M11�r1� M12�r1� M13�r1� M14�r1� M15�r1� M16�r1�
M21�r1� M22�r1� M23�r1� M24�r1� M25�r1� M26�r1�
M31�r1� M32�r1� M33�r1� M34�r1� 0 0

M11�r2� M12�r2� M13�r2� M14�r2� M15�r2� M16�r2�
M21�r2� M22�r2� M23�r2� M24�r2� M25�r2� M26�r2�
M31�r2� M32�r2� M33�r2� M34�r2� 0 0

� .

In case of an impermeable surface, the boundary conditions for
free vibrations are

�rr + s = 0, �r� = 0,
�s

�r
= 0 at r = r1 and r2.

Arguing on similar lines of a permeable surface, the frequency
equation of an impermeable surface is similar to Eq. �7� with the
third and sixth rows replaced by M3j�r�=N3j�r�, �j=1,2 ,3 ,4�.
These are the frequency equations of a thick-walled hollow po-
roelastic cylinder, examined by Malla Reddy and Tajuddin �12�,
and these were not studied for small values of the ratio of the
thickness of the hollow poroelastic cylinder to that of inner radius
of the cylinder. Accordingly this study is also warranted.

For small values of hr1
−1, the waves exist along the circumfer-

ence of inner cylinder and are known as circumferential waves.
Considering the determinant D given in �7� as a function of �ir1
and hr1

−1 �i=1,2 ,3�, and following the analysis of Gazis �2�, one
obtains the frequency equation of circumferential waves of a per-
meable surface to be identical to �7� with the fourth, fifth and sixth
rows replaced by Mij�r2�=Mij� �r1� �i=1,2, J=1,2 ,3 , . . . ,6, i=3,

j=1,2 ,3 ,4�. The frequency equation of circumferential waves of
an impermeable surface is similar to Eq. �7� with the third and
sixth row replaced by Mij�r1�=Nij�r1�, Mij�r2�=Nij� �r1� �i=3,
j=1,2 ,3 ,4�, fourth and fifth rows by Mij�r2�=Mij� �r1� �i=1,2,
j=1,2 , . . . ,6� respectively.

Employing Eqs. �4� into the frequency equation of circumfer-
ential waves of a permeable surface, after a lengthy calculation,
gives

�3r1 = 2��n2 + 1��1 − RN�PR − Q2�−1��1/2. �8�
Arguing on similar lines, the frequency equation of an imper-

meable surface reduces to

�3r1 = 2��n2 + 1��1 + N�PR − Q2��PR�Q + R�K12K22
−1 − P�PR − Q2�

− QR�P + Q��−1��1/2, �9�

where �3 is defined in �2�. Thus the frequency Eqs. �8� and �9� are
complex valued velocity equations.

By ignoring the liquid effects in Eq. �8�, that is, when �12→0,
�22→0, N→�, and �A-Q2R−1�→	 gives

�3r1 = 2��n2 + 1��1 − d��1/2,

where d=��	+2��−1; 	 and � are the familiar elastic Lame’
constants. This is the result for a purely elastic solid derived by
Gazis �Eq. �63� �2��. Equation �9� has no counterpart in a purely
elastic solid.

To analyze the parameters of physical interest, it is convenient
to introduce the following nondimensional variables,

a1 = PH−1, a2 = QH−1, a3 = RH−1, a4 = NH−1,

m11 = �11�
−1, m12 = �12�

−1, m22 = �22�
−1, b1 = bh�c0��−1,

where � = �11 + 2�12 + �22, H = P + 2Q + R, c0
2 = N�−1 . Let g

= r2r1
−1, so that hr1

−1 = �g − 1�, and 
 = �hc0
−1. �10�

In Eq. �10�, 
, b1, m11, m12, m22 are nondimensional frequency,
dissipation, and mass coefficients, while a1, a2, a3, a4 are nondi-
mensional poroelastic constants.

Introducing nondimensional quantities given in �10� into Eq.
�8�, the frequency equation of circumferential waves for a perme-
able surface gives


2

�g − 1�2�
2m22�m11m22 − m12
2 � + b1

2


2m22
2 + b1

2 	
= 4�n2 + 1��1 − a3a4�a1a3 − a2

2�−1� . �11�
Similarly, the frequency equation of circumferential waves for

an impermeable surface is


2

�g − 1�2�
2m22�m11m22 − m12
2 � + b1

2


2m22
2 + b1

2 	
= 4�n2 + 1�
1 +

�T1T2�
2m11m22 − b1
2� + T1T3�
2m22

2 + b1
2���
2m22

2 + b1
2�

�T2�
2m11m22 − b1
2� + T3�
2m22

2 + b1
2��2 + �T2b1
�m12 + m22��2� . �12�

In Eq. �12�, T1, T2, and T3 are defined as

T1 = a4�a1a3 − a2
2�, T2 = a1a2a3 + a1a3

2,

T3 = a1a2
2 − a1

2a3 − a1a2a3 − a2
2a3.

4 Phase Velocity and Attenuation
Let n=kh, where k is the wave number and h is the thickness.

Due to the dissipative nature of the medium, the wave number is

complex, that is, k=kr+ iki. The waves generated obey the diffu-
sion process, and thereby become attenuated. Setting n=kh in the
frequency equation �11� the phase velocity is Cp=Re��k−1� and
the attenuation is xh= �ki�−1. Thus the nondimensional phase veloc-
ity and attenuation of circumferential waves of a permeable sur-
face respectively, give

cpc0
−1 = 22
�B1 + B2�−1/2, xhh−1 = 22�B1 − B2�−1/2, �13�

where the terms B1 and B2 are defined by

706 / Vol. 73, JULY 2006 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.29. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



B1 = � 
4�Er
2 + Ei

2��a1a3 − a2
2�2

�g − 1�4�a1a3 − a2
2 − a3a4�2 −

8
2Er�a1a3 − a2
2�

�g − 1�2�a1a3 − a2
2 − a3a4�

+ 16	1/2

,

B2 = � 
2Er�a1a3 − a2
2�

�g − 1�2�a1a3 − a2
2 − a3a4�

− 4	 . �14�

In Eqs. �14�, Er and Ei are

Er =

2m22�m11m22 − m12

2 � + b1
2


2m22
2 + b1

2 , Ei =
b1
�m12 + m22�2


2m22
2 + b1

2 .

�15�
Arguing on similar lines, the nondimensional phase velocity

and attenuation of circumferential waves of an impermeable sur-
face respectively, give

cpc0
−1 = 22
�B3 + B4�−1/2, xhh−1 = 22�B3 − B4�−1/2, �16�

where B3 and B4 are

B3 = 

4�Er
2 + Ei

2���G3
2 + G1G3G4�2 + �G2G3G4�2�

�g − 1�4��G3 + G1G4�2 + �G2G4�2�2

−
8
2��G3

2 + G1G3G4�Er + �G2G3G4�Ei�
�g − 1�2��G3 + G1G4�2 + �G2G4�2�

+ 16�1/2

,

B4 = 

2��G3
2 + G1G3G4�Er + �G2G3G4�Ei�

�g − 1�2��G3 + G1G4�2 + �G2G4�2�
− 4� . �17�

In Eqs. �17�, Gi �i=1,2 ,3 ,4� are

G1 = T1T2�
2m12m22 − b1
2� + T1T3�
2m22

2 + b1
2� ,

G2 = T1T2
b1�m12 + m22� ,

G3 = �T2�
2m12m22 − b1
2� + T3�
2m22

2 + b1
2��2

+ �T2b1
�m12 + m22��2, G4 = 
2m22
2 + b1

2. �18�

5 Results and Discussion
The physical parameters of sandstone saturated with kerosene

�material-I� and with water �material-II� are respectively, pre-
sented by Fatt �16� and Yew and Jogi �17�. For a given material,
the frequency Eqs. �11� and �12� of permeable and impermeable
surfaces with different dissipations �b1� give a relation between
non-dimensional frequency �
� and the ratio of thickness to inner
radius �hr1

−1�. The dissipation parameters chosen are 0.01, 0.1, and
1, respectively. Frequency 
 vs hr1

−1 is computed for both the

materials and presented in Fig. 1 taking a wide spectrum of values
of hr1

−1 for n=1. n=1 represents the first flexural mode. Figure 1
shows the frequency 
 versus hr1

−1 is linear and that the frequency
increases as n increases for the referred materials. The frequency
is therefore higher for higher flexural modes. The frequency of the
permeable surface for material-I is higher than that of material-II,
while the frequency of an impermeable surface is the same for
both the materials. Moreover, the frequency for an impermeable
surface is higher than that of a permeable surface.

Phase velocity and attenuation versus frequency is computed
each for permeable and impermeable surfaces and exhibited in
Figs. 2 and 3, respectively. Figure 2 shows that phase velocity is
again linear irrespective of dissipations. The phase velocity is
higher for a permeable surface than for an impermeable surface.
Phase velocity of an impermeable surface in material-I is higher
than that of material-II while for a permeable surface, it is same
for both the materials. The attenuation exhibited in Fig. 3 is simi-
lar in phenomenon to phase velocity but nonlinear for a permeable
surface and different for different dissipations. Attenuation in
material-I is less than that in material-II for a permeable surface
but linear and similar for both the materials for an impermeable
surface.

Fig. 1 Frequency as a function of h /r1 for n=1

Fig. 2 Phase velocity as a function of frequency

Fig. 3 Attenuation as a function of frequency
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The techniques used by Koiter in 1968 to derive a simplified set of
linear equilibrium equations for an elastically isotropic circular
cylindrical shell in terms of displacements and the associated
pointwise error estimate engendered in Love’s uncoupled strain-
energy density are here extended to derive analogous simplified
equilibrium equations and an error estimate for elastically isotro-
pic cylindrical shells of arbitrary closed cross section.
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affection, on the occasion of his 60th birthday.

1 Introduction
In a report �1� of 1968, unpublished in the archival literature,

Koiter presented what he called the “modified, simplest possible
accurate linear theory of thin circular cylindrical shells.” Derived
from the Sanders-Koiter theory �2,3�, Koiter’s equations of equi-
librium with body forces �which, by d’Alembert’s Principle, can
immediately be converted into equations of motion� are remark-
able in several ways. First, they are much simpler than the analo-
gous equations of Love �4� or Flügge �5�—see �6� for a
comparison—but of equal accuracy. In particular, the two equa-
tions of tangential equilibrium, expressed in terms u and v, the
midsurface axial and circumferential displacements, respectively,
are the same as those of the simplified theory of Donnell �7�.
Moreover, if the tangential equilibrium equations are used to dif-
ferentially eliminate u and v from the normal equilibrium equa-
tion, then the resulting eighth-order partial differential equation
for the outward midsurface normal displacement w is identical to
that derived in a less rigorous manner by Morley �8�. Notably, this
equation is free of Poisson’s ratio �, except as it appears in the
small dimensionless parameter h2 /12�1−�2�R2, where h is the
constant thickness of the shell and R is the midsurface radius.
Published derivations of Koiter’s simplified equations may be
found in a paper by Mangelsdorf �9� and in a book by Niordson
�10�.

In the present Note we extend Koiter’s simplifications to elas-
tically isotropic cylindrical shells of arbitrary closed cross section.
The main impediment is that the dimensionless cross-sectional
curvature � is no longer a constant. Following Koiter’s approach,
we add small terms to Love’s uncoupled quadratic strain-energy
density V to put as many terms as possible in the bending strain-
energy density into divergence form. Such terms have no influ-
ence on the associated Euler-Lagrange equations. If V* is the

modified �coupled� strain-energy density resulting from the addi-
tion of these small terms to V,then, using basic inequalities, we
show that

�V* − V� = �h/R��C1����1 + O����h/R��V

+ C2��•���V�
0

�

�1 + O����h/R��Vdx	 �1�

where C1 and C2 are O�1� constants independent of h /R, 2�R is
the midsurface circumference, R� is the length of the cylindrical
midsurface, and ��•
��� /�y, where Ry is circumferential distance.
Later, we shall also use the abbreviation ���
��� /�x, where Rx is
distance along a generator of the midsurface.

For a circular cylindrical shell ��=1� all terms in the bending
strain-energy density involving u and v can be cast into diver-
gence form, but for nonconstant �, some terms involving the cir-
cumferential displacement remain. Nevertheless, the simplifica-
tions of the unmodified Sanders-Koiter first-approximation shell
equations are substantial.

Finally, we note that our final equilibrium equations apply with-
out change to nonclosed sections. Only the boundary terms in the
associated energy functional and one integral inequality have to be
modified.

2 The Governing Equations

With �u ,v	=R�ū , v̄	 and R−1� denoting the curvature of the
cross section of the midsurface, the dimensionless extensional and
bending strains of the Sanders-Koiter theory can be expressed in
terms of the dimensionless midsurface displacements and their
derivatives as

��x,�y,2�	 = �ū�, v̄ • + �w̄, ū • + v̄�	

�kx,ky,k	 = ��x�,�y
• ,�y� + 1

2��	 , �2�

where the �dimensionless� rotations are given by

��x,�y	 = �w̄�,w̄• − �v̄	 . �3�

Love’s uncoupled strain-energy density can be written as V

= �1−�2�−1EhV̄, where E is Young’s modulus and

V̄ = 1
2 ���x + �y�2 + 2�1 − ����2 − �x�y�

+ �2��kx + ky�2 + 2�1 − ���k2 − kxky��	


 V̄e + �2V̄b. �4�

Here, �2=h2 /12R2 and “e” and “b” are mnemonics for “exten-
sion” and “bending.”

3 Modifications of the Bending Invariants
Noting �2�–�4�, we define the modified first bending invariant as

I* 
 I + ��y = �� + �2�w̄ − �•v̄ , �5�

where I
kx+ky and � is the surface Laplacian. Thus,

I*
2 − I2 = ��2�yI + ��y

2� . �6�

To define the second modified bending invariant II*, first note
that

�k − 1
2���2 − kxky = II − ��k + 1

4�2�2, �7�

where II
k2−kxky. Furthermore, because

k − 1
2�� = �y� = �x

• − �v̄�, �8�

by �2� and �3�, we may write
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�k − 1
2���2 − kxky = ��x

• − �v̄���y� − �x��y
•

= ���x
• − �v̄���y�� − ��x��y�• + �v̄��y . �9�

By the divergence theorem, the integral over the midsurface of the
first two terms in the second line can be replaced by line integrals
around the boundary of the cylindrical midsurface.

To deal with the last term in the second line of �9�, use �2� and
note that v̄�=2��−�x

• . Thus,

�v̄��y = �2���y�� − ���x�y�• − 2��k + �2�2 + ��xky + �•�x�y .

�10�
To further reduce the last four terms in �10�, note by �2� that

�y�x,y� − �y�0,y� =�
0

x

�y��	,y�d	

=�
0

x �k −
1

2
���d	 . �11�

Thus, because �x= ū�,

�•�x�y = ��•ū�y�0,y��� + �•�x�
0

x �k −
1

2
���d	 �12�

or, more symmetrically,

�•�x�y = ��•ū f�y��� + E , �13�

where

f 
 1
2 ��y�0,y� + �y��,y�� �14�

and

E 

1

2
�•�x��

0

x

−�
x

� ��k −
1

2
���d	� �15�

is an additional error term produced by nonconstant curvature.
Substituting �13� and �10� into �9� and the resulting equation

into �7�, we are led to define the second modified bending invari-
ant as

II* 
 II + ���k − �xky − 3
4��2� − E

= ���x
• + �ū •��y + �•ū f�y��� − ���x� + ��x��y�•. �16�

4 Equations of Equilibrium in Terms of Displacements
With

V̄b
* 
 1

2 �I*
2 + 2�1 − ��II*� �17�

and �1−�2�−1E�h /R��p̄x , p̄y , p̄	 denoting the axial, circumferential,
and outward normal components of the external surface load, con-
sider the dimensionless energy functional


̄*�ū, v̄,w̄� 
 �
0

2��
0

� V̄e +
1

2
�2I*

2 − �p̄xū + p̄yv̄ + p̄w̄��dxdy

+�
0

2�

��2�1 − �����x
• + �ū •��y + �•ū f�y��

− �N̂xū + Ŝxv̄ + Q̂xw̄ + M̂x�x�	0
�dy , �18�

written here for prescribed end loads �1−�2�−1Eh�N̂x ,

Ŝx , Q̂x ,M̂x	0
�. The associated Euler-Lagrange equations are

ū� + 1
2 �1 − ��ū •• + 1

2 �1 + ��v̄�•+ ��w̄� + p̄x = 0 �19�

1
2 �1 + ��ū�• + 1

2 �1 − ���̄� + �̄•• + ��w̄�•

�2�•��� + �2�w̄ − �•�̄� + p̄y = 0 �20�

���ū� + v̄ • + �w̄� + �2�� + �2���� + �2�w̄ − �•v̄� − p̄ = 0.

�21�
These equations reduce to Koiter’s �1� for a circular cylindrical
shell ��=1�.

5 Error Estimates
From �4�, �6�, and �16�,

�V̄* − V̄� = �2� 1
2 �I*

2 − I2� + �1 − ���II* − II�� � ����Q

+ �2��2� 1
2�y

2 + 3
4 �1 − ���2� + �1 − ���E�	 , �22�

where

Q 
 ���kx + ky��y + �1 − ����k − �xky�� �23�
is a quadratic form. Let

�max = max�Q/V̄�, V̄ � 0, �24�
taken over all strains. The associated eigenvalue problem involves
a 66 determinant for computing �max that, because � and k
uncouple from the other four strains, reduces to evaluating a
44 and a 22 determinant. The six eigenvalues are readily
computed by hand, the largest being

�max =�3 − 2� + �5 − 4�

2�1 − �2�
� 1.618 if 0 � � �

1
2 . �25�

�This agrees with Koiter’s upper bound �1�.� Furthermore, because

V̄e = 1
2 ��1 − �2��y

2 + ��x + ��y�2 + 2�1 − ���2� , �26�

the term in brackets in the second line of �22� is bounded by

�1−�2�−1V̄.
Finally, we turn to the last term in �22�. From �15�,

�1 − ���2�E� �
1
2 �1 − ���2��•���x��

0

�

�k − 1
2���dx . �27�

It is not difficult to show that

�1 − ���2�k2 − ��k + 1
4�2�2� � �1 + 1

2�����2V̄ . �28�

Hence, reversing the roles of �x and �y in �26� and using the
Schwarz inequality, we obtain

�1 − ���2�E� � ���•��2�1 − �2��−1/2�V̄�
0

� �1 +
1

2
�����2

V̄dx�1/2

�29�

Substituting �24� and �29� into �22� and setting �=2h /�3R, V

= �1−�2�−1EhV̄, we obtain the inequality �1� with

C1 = �max/2�3 and C2 = 1/�3�1 − �2� . �30�

6 Conclusion
If �=1, the inequality �1� reduces to Koiter’s pointwise result

�1�. If ��1, our error estimate is only partially pointwise and the
dimensionless energy functional �18� associated with the simpli-
fications proposed here contains the somewhat unusual boundary
term 1

2 �1−���2�0
2��•ū��y�0,y�+�y�� ,y��0

�dy. On the other hand,
if the term �•�x�y in �10� is not replaced by a divergence term
plus the error term E, as in �13�, then the error estimate �1� is
identical to Koiter’s, the above-mentioned boundary term does not
appear in the dimensionless energy functional, and the complicat-
ing terms �1−���2��•�w̄•−�v̄�� , 1

2 ���2�•ū�� ,−��•ū��•	must be
added to the equilibrium Eqs. �19�–�21�, respectively.
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